MATLABR Builder for Excel

The Language of Technical Computing

Computation
Visualization

Programming

User’s Guide @\ The MathWorks

Version 1

X LB

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Builder for Excel User’s Guide
© COPYRIGHT 2001- 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 2001 Online only New for Version 1.0

July 2002 First printing Version 1.1 (Release 13)

June 2004 Online only Version 1.2 (Release 14) Name changed
from MATLAB Excel Builder

August 2004 Online only Version 1.2.1 (Release 14+)

October 2004 Online only Version 1.2.2 (Release 14SP1)

Contents

Getting Started
1

Building a Deployable Application 1-2
Elements of a MATLAB Builder for Excel Project 1-2
Creatinga Project 1-3
Managing M-Files and MEX-Files 1-6
Building a Project 1-8
Testingthe Model 1-9
Application Deployment 1-10
Packaging and Distributing the Component 1-10

Graphical User Interface

2

Graphical User Interface Menus 2-2
File Menuttt et e 2-3
Project Menu 2-3
Build Menu i 2-4
Component Menu00t 2-4
HelpMenu e 2-6

Project Settings 2-7

Programming with MATLAB Builder for Excel

3

OVerVICW . .. e 3-2

When to Use a Formula Function or a Subroutine 3-3

ii

Contents

Initializing MATLAB Builder for Excel Libraries

withExcel 34
Creating an InstanceofaClass 3-6
CreateObject Function 3-6
Visual Basic New Operator 3-6
Calling the Methods of a Class Instance 3-9
Processing varargin and varargout Arguments 3-11
Handling Errors During a Method Call 3-13
Modifying Flags i, 3-14
Array Formatting Flags 3-14
Data Conversion Flags 3-16

Magic Square Examples 4-2
Creatingthe Project 4-2
Building the Project 4-4
Adding the MATLAB Builder for Excel COM Function
toExcel 4-5
Ilustration 1. Output Magic Square Results to Excel 4-5
IMlustration 2. Transpose the Output 4-5
Ilustration 3. Resize the Output 4-6
Inspecting the Visual BasicCode 4-6

Using Multiple Files and Variable Arguments 4-8
Creating the Project 4-8
Building the Project 4-11
Adding the MATLAB Builder for Excel COM Functions
toExcel 4-11
Illustration 4: Callingmyplot 4-13
Illustration 5: Calling mysum Four Different Ways 4-14

Illustration 6: myprimes Macro......................... 4-15

Inspecting the Visual BasicCode 4-16
Spectral Analysis Example 4-18
Building the Component 4-18
Integrating the Component with Visual Basic
for Applications i 4-20
Creating The Visual BasicForm 4-22
Adding The Spectral Analysis Menu Item to Excel 4-29
Savingthe Add-in 4-30
Testing The Add-in 4-31
Packagethe Add-in 4-34

Function Wizard

5]

Introduction 5-2
Installing the Function Wizard Add-in 5-2
Starting the Function Wizard 5-3
Function Viewer i 5-4
Component Browser it 5-6
Function Properties i, 5-7
Argument Properties 5-12
Function Utilities 5-14

Function Reference

6

Functions — Alphabetical List 6-2

iii

iv

Producing a COM Object from MATLAB

Al

Capabilities A-2
Calling Conventionso, A-7
Producinga COMClass . ..ottt A-8
IDL Mappingcoii ittt e e A-8
Visual BasicMappingc.oiiiiiiiiinnnnnannn. A9
MATLAB Compiler Output A-10

Data Conversion

B

Data ConversionRules B-2
Array Formatting Flags B-12
Data Conversion Flags B-14

Registration and Versioning

C

Component Registration C-2
Self-Registering Components C-2
Globally Unique Identifiers C-2

Versioning C4

Obtaining Registry Information C-5

Contents

Utility Library

D

Utility Library Classes

ClassMWUtil
Class MWFlags
Class MWStruct
Class MWField
Class MWComplex
Class MWSparse
Class MWArg

Enumerations

Enum mwArrayFormat

Enum mwDataType

Enum mwDateFormat

Troubleshooting

E|

Index

vi Contents

Getting Started

Building a Deployable Application Describes the sequence of steps needed to create and
(p. 1-2) deploy an application.

1 e ng Started

Building a Deployable Application

Using MATLAB® Builder for Excel to create a deployable application is a
simple process requiring a sequence of six steps. For details see

® “Creating a Project” on page 1-3

® “Managing M-Files and MEX-Files” on page 1-6

¢ “Building a Project” on page 1-8

® “Testing the Model” on page 1-9

e “Application Deployment” on page 1-10

¢ “Packaging and Distributing the Component” on page 1-10

This section references various menus provided by the MATLAB Builder
graphical user interface (GUI). For a full discussion of these menus, see
Chapter 2, “Graphical User Interface.”

Elements of a MATLAB Builder for Excel Project

A project consists of all the elements necessary to build a deployable
application using MATLAB Builder for Excel. Excel builder components are
COM objects accessible from Microsoft Excel through Visual Basic for
Applications. COM is an acronym for Component Object Model, which is
Microsoft’s binary standard for object interoperability. Each COM object
exposes a class to the Visual Basic programming environment. The class
contains a set of functions called methods, corresponding to the original
MATLAB functions included in the component’s project.

Note Currently, Excel builder components support one class per component.

Classes

When creating a component, you must additionally provide a class name. The
component name represents the name of the DLL file to be created. The class
name denotes the name of the class that performs a call on a specific method
at run-time. The relationship between component name and class name, and
which methods (MATLAB functions) go into a particular class, are purely
organizational. As a general rule, when compiling many MATLAB functions, it

Building a Deployable Application

helps to determine a scheme of function categories and to create a separate
class for each category. The name of each class should be descriptive of what
the class does. Organizing related functions into classes in this way has the
added advantage of reducing the amount of code to rebuild and redeploy when
one function is changed.

Versions

Excel builder components also support a simple versioning mechanism. A
version number is attached to a given component. This number gets
automatically built into the DLL file name and the system registry
information. As a general rule, the first version of a component is 1.0 (the
default value if none is chosen). Changes made to the component before
deployment keep the same version number. After deployment, change the
version number for all subsequent changes, so that you can easily manage the
new and old versions. The system sees classes in different versions of the same
component as distinct, even if they have the same name.

Creating a Project

To begin project creation, enter the MATLAB command mx1tool at the
command line. The MATLAB Builder window appears.

1-3

1 e ng Started

«). MATLAR Builder
File Project Build Component Help

rProject File Build Statu

A Eile I

FrojectFiles

it | B me | Elear

Figure 1-1: MATLAB Builder Window

For a complete description of the features available from this window, see
“Graphical User Interface Menus” on page 2-2.

Select File -> New Project on this window to view the New Project Settings
dialog box.

14

Building a Deployable Application

«): New Project Settings

rProject naming

Component name

Class name

[ada

Frojectversion

Froject directory

|
Erowse...

rCompiler option

[~ Creste a zingleton MCR
[Build debug version

[Show verbose output

Ok | Cancel

- 10 =l
Classes
Remaove
| Help |

Figure 1-2: New Project Settings Dialog Box

Component name denotes the name of the DLL created later in the build
process. After you enter the component name, the GUI automatically enters a
Class name identical to the component name. You can change the class name
to something more descriptive. Although the component name and class name
can be the same, the component name cannot match the name of any M- or
MEX-files added to the project later. For MATLAB Builder for Excel, the
Create a singleton MCR option is always on, whether or not the box is

checked.

The Project version default value is 1.0. See “Versions” on page 1-3 for
additional information about Project version.

Project directory specifies where any project and build files are written when
compiling and packaging your models. The project directory is automatically
generated from the name of your current directory and the component name.

1-5

1 e ng Started

1-6

Note You can accept the automatically generated project directory path or
choose another of your liking. Once you click OK on this menu, this path is
saved. If you later decide to move the project or change anything on its path,
you need to redo the entire project specification process, including adding files
to the project (see “Project Settings” on page 2-7) and respecifying the project
directory path.

You can create a debug version of your compiled models and can specify verbose
output when you invoke the MATLAB Compiler. The debug option enables you
to backtrace up to the point where you can identify if the failure occurred in the
initialization of MCR, the function call, or the termination routine.

Once you accept these settings on the New Project Settings dialog box by
clicking OK, they become part of your project workspace and are saved to the
project file along with the names of any M- or MEX- files you subsequently add
to the project. A project file of the name <component_name>.mx1 is
automatically saved to the project directory.

Managing M-Files and MEX-Files

After you create a project, you enable the Project, Build and Component
menu options on the MATLAB Builder window.

Building a Deployable Application

«): MATLAB Builder - myprimes_mxl

File Project Build Component Help
rProject File rBuild Statu

Add File |

|| Project Files
-] myprimes
* h-files
* MEX-files

Edit | Remaove | Clear |

Figure 1-3: MATLAB Builder Window with Options Activated

Add M- and/or MEX-files to the project by clicking the Add File button or
selecting the Project -> Add File... menu choice. You can add only a single file
at a time to the project.

Note The name of any file added to the project cannot duplicate the name of
any function existing in the library of precompiled functions.

The Remove button or Project -> Remove File menu choice removes any
selected M- or MEX-files. You can highlight multiple files for removal at one
time.

The Edit button, the Project -> Edit File... or double-clicking an M-file name
opens the selected M-file(s) in the MATLAB editor for modification or
debugging. You cannot edit MEX files.

1-7

1 e ng Started

1-8

Building a Project

After you define your project settings and add the desired M- and MEX-
functions, you can build a deployable DLL and the necessary Visual Basic for
Applications (VBA) code that allows Excel to access the DLL. Choosing

Build -> EXCEL/COM Object invokes the MATLAB Compiler, writing the
intermediate source files to <project_dir>\src and the output files necessary
for deployment to <project_dir>\distrib.

Command Line Interface

Alternatively, you can invoke the MATLAB Compiler directly via the mcc
command using the MATLAB command line interface. See the MATLAB
Compiler documentation for a description of the mcc command and its options.

Note If you use mcc directly, the <project_dir>\src and
<project_dir>\distrib directories are not automatically created. To create
these directories and copy associated files to them, use the mcc command’s -d
switch.

On the command line use the excel wrapper option to create Excel COM
components with mcc, as follows:

mcc -W excel:<component_name>[,<class_name>[,<major>.<minor>]]

An unspecified <class_name> defaults to <component name>, and an
unspecified version number defaults to the latest version built or 1.0, if there
is no previous version.

The following example shows the mcc command used to create a COM
component called mycomponent containing single COM class named myclass
with methods foo and bar, and a version of 1.0:

mcc -W excel:mycomponent,myclass,1.0 -T link:1lib foo.m bar.m

Use the -b switch to generate an Excel-compatible formula function for each
M-file on the command line:

mcc -W excel:mycomponent,myclass,1.0 -b -T link:1ib foo.m bar.m

You can also use the cexcel bundle file to simplify the command line input, as
follows:

Building a Deployable Application

mcc -B cexcel:mycomponent,myclass,1.0 foo.m bar.m

The cexel bundle option automatically includes the -b switch.

Build Status

The Build status panel shows the output of the build process and informs you
of any problems encountered. The files appearing in the
<project_dir>\distrib directory will be a DLL and a VBA file (.bas). The
resulting DLL is automatically registered on your system.

To clear the Build status panel, select Build -> Clear Status. The output of
the build process is saved in the file <project_dir>\build.log. To open the
Build Log, choose Build -> Open Build Log. The Build Log provides a record
of the build process that you can refer to after you have cleared the

Build status panel. If you have reason to contact MathWorks Technical
Support with a question about the build process, you will be asked to provide a
copy of this log.

Testing the Model

At this point, you can test the model by importing the VBA file (.bas) into the
Excel Visual Basic editor and invoking one of the functions from the Excel
worksheet. To import the VBA code into Excel’s Visual Basic editor, open Excel
and choose Tools -> Macros -> Visual Basic Editor. From the Visual Basic
editor, choose File -> Import and select the created VBA file from the
<project_dir>\distrib directory.

The Visual Basic module created when you build the project contains the
necessary initialization code and a VBA formula function for each MATLAB
function processed. Each supplied formula function essentially wraps a call to
the respective compiled function in a format that can be accessed from a cell in
an Excel worksheet. This function takes a list of inputs corresponding to the
inputs of the original MATLAB function and returns a single output
corresponding to the first output argument. Formula functions of this type are
most useful to access a function of one or more inputs that returns a single
scalar value. When you require multiple outputs or outputs representing
ranges of data, you need a more general Visual Basic subroutine. For a more
detailed discussion on integrating Excel builder components into Microsoft
Excel via Visual Basic for Applications, see Chapter 3, “Programming with
MATLAB Builder for Excel.”

1-9

1 e ng Started

Application Deployment

Now create an Excel add-in (.x1a) from your VBA code. Return to the Excel
worksheet window and save the file as an .x1a file to the
<project_dir>\distrib directory.

Here are the steps necessary to create an Excel add-in from the generated VBA
code. If these steps do not work, refer to your Excel documentation on creating
a .xla file:

Start Excel.

2 Choose Tools -> Macros -> Visual Basic Editor.

3 In the Microsoft Visual Basic window, choose File -> Import.

»

Select VBA file (.bas) from the <projectdir>distrib directory.

Close the Visual Basic Editor.

%))

6 In the Excel worksheet window, choose File -> Save As... .

N

.Set the Save as type to Microsoft Excel add-in (*.x1a).

8 Save the .xla file to <projectdir>\distrib.

You can also deploy files in *.x1s and *.bas formats. To deploy in *.x1s
format, follow the steps above but change the Save as type in Step 7 to *.x1s.
To deploy as VBA code, follow Steps 1 - 4 above only.

Packaging and Distributing the Component

Once you have successfully compiled your models and created the Excel add-in,
you are ready to package the component for distribution to your end users.

1-10

Building a Deployable Application

Choose Component -> Package Component to create a self-extracting

executable containing these files.

File

Purpose

_install.bat

<componentname_projectversion>.dll

MCRInstaller.exe

<componentname>.ctf

*.xla

Script run by the
self-extracting executable

Compiled component

Self-extracting MATLAB
Component Runtime library
utility; platform-dependent file
that must correspond to the
end user’s platform

Component Technology File
archive; platform-dependent
file that must correspond to the
end user’s platform

Any Excel add-in files found in
the <projectdir>\distrib
directory.

MCRInstaller.exe installs MATLAB Component Runtime (MCR), which you
need to install on the target machine once per release. You can find the steps

needed to deploy an application on a target machine in the MATLAB Compiler

documentation. See the heading “Deploying the Application” in Chapter 5,

“Stand-Alone Applications.”

To use the Excel add-ins, start Excel, choose Tools -> Add-Ins, and select the

desired .x1a file.

You must repeat this distribution process on each target machine.

1-11

1 e ng Started

1-12

Graphical User Interface

Graphical User Interface Menus
(p. 2-2)

Project Settings (p. 2-7)

Describes the available set of menus.

Discusses how use the Project Settings menus to create
settings for a new project or to edit settings of an existing
project.

2 Graphical User Interface

Graphical User Interface Menus

The MATLAB function mx1tool displays the MATLAB Builder window.

«): MATLAB Builder

File Project Build Component Help
rProject File Build Statu
A File |
ProjectFiles
It | FEmove | ElEar |

The information below describes the use of the various menus that the
MATLAB Builder window provides. These menus are

* “File Menu” on page 2-3

® “Project Menu” on page 2-3

® “Build Menu” on page 2-4

¢ “Component Menu” on page 2-4

* “Help Menu” on page 2-6

Graphical User Interface Menus

File Menu
The File menu creates and manages Excel builder projects.

Mew Project...
Dpen Project...
Save Project...
Save As Project...
Close Project
Close CMPTOOL

* New Project opens the New Project Settings dialog box. This menu item
creates a project workspace where you can add M- and MEX-files to the
project and store project settings.

® Open Project allows you to load a previously saved project.

® Save Project saves the current project. If you have not yet saved the current
project, you are prompted for a filename.

® Save As Project saves the current project after prompting for a filename.

¢ Close Project closes the current project.

¢ Close CMPTOOL closes the MATLAB Builder window.

Project Menu
The Project menu controls the management of the current project’s files.

&dd File, ..
Edit File. ..
Remove File

Settings. ..

¢ Add File adds an M-file or MEX-file to the current project. (The Add File
button in the Project files frame of the main window performs the same

task).
¢ Edit File allows you to edit the selected M-file. (The Edit button in the
Project files frame of the main window performs the same task.)

2-3

2 Graphical User Interface

2-4

* Remove File removes the currently selected files from the project. (The
Remove button in the Project files frame of the main window performs the

same task.)
® Settings opens the project settings dialog box showing the current project’s
information. See “Project Settings” on page 2-7 for details.

Build Menu
The Build menu controls the building of the project’s files into an
Excel-accessible COM object.

ExcellCOM Object

Clear Status
Spen Build Log

¢ Excel/COM Object builds project files into an Excel-accessible COM object
and generates Visual Basic Application code necessary to create an Excel
add-in. The Excel add-in adds the new function(s) to the Excel function name

space.
® Clear Status clears the Build status window.
¢ Open Build Log displays project status that has been saved in this log file.

Component Menu
The Component menu completes the process of building a deployable
application.

Package Component

Component Info...

® Package Component readies files for deployment. The deployable files are
packaged in a self-extracting executable. Click on Package Component to
display the Package Files dialog box. See “Package Files” on page 2-5 for
details.

¢ Component Info displays a dialog box with information about the current
project’s component and component versions. See “Component Information”

on page 2-5 for details.

Graphical User Interface Menus

Package Files
The Package Files choice displays the Package Files dialog box.

«); Package Files

Add File | Remaove File |

™ Include MCR

| | Package Files
UserFiles
Systemn Files

Create... | Close | Help |

The Add File and Remove File buttons allow you to add or delete user files to
or from the package.

A checkbox allows you to include or exclude MATLAB Component Runtime
(MCR) from the package. MCR is a stand-alone set of shared libraries that
enables the execution of M-files. MCR provides complete support for all
MATLAB language features.

Use the MCR Location button to specify the directory location of
MCRInstaller.zip.

After you have specified the files that you want to include in the package, click
Create to initiate package creation.

Component Information
The Component Info choice displays the Component dialog box.

2-5

2 Graphical User Interface

2-6

«): Component - chltest o [=] 3]

4 Mame- CBLTEST
=4 Wergion
=-2410
-4 Type Likrary: chitest 1.0 Type Library
- Librarg ID:{0147EB2B-FECA-4515-9CR3-B5C307 2ECADF}
- File Mame: dwarkichitestdistribnchltest_1_0.dll
E-Zq Classes
=24 Name: aaaclass
L@ Class D {8F5BAN22-FO50-4903-39C1-F2EFFE500835}
FProgram ID: chltest.aaaclass. 1_0
In Process Server: diwarkichitestdistribnchitest_1_0.dll
_4 Methods
Lo function [¥] = showwerrariy)
FPropetties
Events
=9 Interfaces
@ MName: laaaclass
Interface |D: {FE330754-949B8-4 CEQ-9D8R- CHAZBATEFCT 3}

|»

El_l 20 L
H-]3.0 -
Help | Close |

This dialog presents the component information that is stored in the registry.

See Table C-2, Registry Information Returned by componentinfo, on page C-7,
for an explanation of these fields. The Methods listbox shows the name and
M-file calling syntax of each function within the component.

Help Menu

The Help menu provides access to the context-sensitive help for the MATLAB
Builder window.

CMPTOOL Help

MATLAB Bullderfor EXcel » a1 ap Builder for Excel Help
Ahout MATLAR Builder for Excel

Project Seftings

Project Settings

For new projects, choosing New Project from the File menu displays the New

Project Settings dialog box.

For existing projects, choosing Open Project from the File menu followed by
Settings from the Project menu displays the Project Settings dialog box.

«): New Project Settings

=10l x|

rProject naming

Component name

Classes

Class name

I Add ==
Remaove

Frojectversion

Froject directory

|
Erowse...

rCompiler option

[~ Creste s zingleton MCR
[Build debug version

[Show verbose output

«): New Project Settings

rProject naming

=10lx|

Component name

lmagic

Class name

I Add ==
Remove

Frojectversion

Classes

Hlmagicclass

1.0

Froject directory

|D:1W0rm><lmagic

Erowse...

rCompiler option
[Creste s singleton MCR
™ Build debug version

[Show verbose output

Ok | Cancel | Help

New Project Settings

Ok | Cancel |

Help |

Existing Project Settings

See “Versioning” on page C-4 for a description of Component name,
Class name and Project version. Project directory is the location of any

project output files.

Under Compiler options on these dialog boxes, you can create a debug version
of your compiled models and can specify verbose output when you invoke the

MATLAB Compiler.

2-7

2 Graphical User Interface

Programming with
MATLAB Builder for Excel

Overview (p. 3-2) Introduction to this section.

When to Use a Formula Function or a Discusses the Visual Basic for Applications (VBA) two
Subroutine (p. 3-3) basic procedure types, functions and subroutines.

Initializing MATLAB Builder for Excel Describes initialization of the supporting libraries with
Libraries with Excel (p. 3-4) the current instance of Excel.

Creating an Instance of a Class (p. 3-6) Discusses creation of an instance of the class that
contains a classs method.

Calling the Methods of a Class Describes calling a class method to access compiled
Instance (p. 3-9) MATLAB functions.

Processing varargin and varargout Describes how to add varargin and varargout parameters
Arguments (p. 3-11) to the argument list of a class method.

Handling Errors During a Method Call Describes the Visual Basic exception handling capability.
(p. 3-13)

Modifying Flags (p. 3-14) Describes array formatting and data conversion flags.

3 Programming with MATLAB Builder for Excel

3-2

Overview

Each MATLAB Builder for Excel component is built as a stand-alone COM
object. You access a component from Microsoft Excel through Visual Basic for
Applications (VBA). This section provides general information on how to
integrate Excel builder components into Excel using the VBA programming
environment. It assumes that you have a working knowledge of VBA and is not
intended to be a discussion on how to program in Visual Basic. Refer to the
VBA documentation provided with Excel for general programming
information.

You can easily integrate Excel builder components into a VBA project by
creating a simple code module with functions and/or subroutines that load the
necessary components, call methods as needed, and process any errors. In
general, you need to address seven items in any code written to use Excel
builder components:

® “When to Use a Formula Function or a Subroutine” on page 3-3

e “Initializing MATLAB Builder for Excel Libraries with Excel” on page 3-4
® “Creating an Instance of a Class” on page 3-6

¢ “Calling the Methods of a Class Instance” on page 3-9

® “Processing varargin and varargout Arguments” on page 3-11

¢ “Handling Errors During a Method Call” on page 3-13

® “Modifying Flags” on page 3-14

Note All code samples in this section are for illustration purposes and
reference a hypothetical class named myclass contained in a component
named mycomponent with a version number of 1.0. See “Usage Examples” on
page 4-1 for a list of working code samples.

When to Use a Formula Function or a Subroutine

When to Use a Formula Function or a Subroutine

Visual Basic for Applications (VBA) provides two basic procedure types,
functions and subroutines. You access a VBA function directly from a cell in a
worksheet as a formula function and access a subroutine as a general macro.
Function procedures are useful when the original MATLAB function takes one
or more inputs and returns one scalar output. When the original MATLAB
function returns an array of values or multiple outputs, you need a subroutine
procedure to map these outputs into multiple cells/ranges in the worksheet.
When you create a Excel builder component, you produce a VBA module (.bas
file). This file contains simple call wrappers, each implemented as a function
procedure for each method of the class.

3-3

3 Programming with MATLAB Builder for Excel

3-4

Initializing MATLAB Builder for Excel Libraries with Excel

Before you use any Excel builder component, initialize the supporting libraries
with the current instance of Excel. Do this once for an Excel session that uses
Excel builder components. To do this initialization, call the utility library
function MWInitApplication, a member of the MWUtil class. This class is part
of the MWComUtil library. See the section “Utility Library Classes” on page D-3
for a detailed discussion of the functionality provided with this library.

One way to add this initialization code into a VBA module is to provide a
subroutine that does the initialization once, and simply exits for all subsequent
calls. The following Visual Basic code sample initializes the libraries with the
current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument of
Application. Once this function succeeds, all subsequent calls exit without
reinitializing.

Dim MCLUtil As Object

Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then
On Error GoTo Handle_Error
If MCLUtil Is Nothing Then
Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub
Handle_Error:
bModuleInitialized = False
End If
End Sub

Initializing MATLAB Builder for Excel Libraries with Excel

This code is similar to the default initialization code generated in the VBA
module created when the component is built. Each function that uses Excel
builder components can include a call to InitModule at the beginning to ensure
that the initialization always gets performed as needed.

3-5

3 Programming with MATLAB Builder for Excel

3-6

Creating an Instance of a Class

Before calling a class method (compiled MATLAB function), you must create an
instance of the class that contains the method. VBA provides two techniques
for doing this:

® CreateObject function

¢ Visual Basic New operator

CreateObject Function

This method uses the Visual Basic application program interface (API)
CreateObject function to create an instance of the class. To use this method,
dimension a variable of type Object to hold a reference to the class instance
and call CreateObject with the class’ programmatic identifier (ProgID) as an
argument as shown in the next example.

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle Error
aClass = CreateObject("mycomponent.myclass.1_0")
" (call some methods on aClass)
Exit Function
Handle Error:
foo = Err.Description
End Function

Visual Basic New Operator

This method uses the Visual Basic New operator on a variable explicitly
dimensioned as the class to be created. Before using this method, you must
reference the type library containing the class in the current VBA project. Do
this by selecting the Tools menu from the Visual Basic editor, and then
selecting References... to display the Available References list. From this list
select the necessary type library.

The following example illustrates using the New operator to create a class
instance. It assumes that you have selected mycomponent 1.0 Type Library
from the Available References list before calling this function.

Function foo(x1 As Variant, x2 As Variant) As Variant

Creating an Instance of a Class

Dim aClass As mycomponent.myclass

On Error Goto Handle Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function
Handle Error:
foo = Err.Description
End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current project
contain types named myclass.

Both methods are equivalent in functionality. The first method does not
require a reference to the type library in the VBA project, while the second
results in faster code execution. The second method has the added advantage
of enabling the Auto-List-Members and Auto-Quick-Info capabilities of the
VBA editor to work with your classes. The default function wrappers created
with each built component all use the first method for object creation.

In the previous two examples, the class instance used to make the method call
was a local variable of the procedure. This creates and destroys a new class
instance for each call. An alternative approach is to declare one single
module-scoped class instance that is reused by all function calls, as in the
initialization code of the previous example.

3-7

3 Programming with MATLAB Builder for Excel

The following example illustrates this technique with the second method.

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle Error
If aClass Is Nothing Then
Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function
Handle_ Error:
foo = Err.Description
End Function

3-8

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance

After you have created a class instance, you can call the class methods to access
the compiled MATLAB functions. Excel builder applies a standard mapping
from the original MATLAB function syntax to the method’s argument list. See
section “Calling Conventions” on page A-7 for a detailed description of the
mapping from MATLAB functions to COM class method calls.

When a method has output arguments, the first argument is always nargout,
which is of type Long. This input parameter passes the normal MATLAB
nargout parameter to the compiled function and specifies how many outputs
are requested. Methods that do not have output arguments do not pass a
nargout argument. Following nargout are the output parameters listed in the
same order as they appear on the left side of the original MATLAB function.
Next come the input parameters listed in the same order as they appear on the
right side of the original MATLAB function. All input and output arguments
are typed as Variant, the default Visual Basic data type.

The Variant type can hold any of the basic VBA types, arrays of any type, and
object references. Appendix B, “Data Conversion” describes in detail how to
convert Variants of any basic type to and from MATLAB data types. In
general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic UDTs. You can also pass Excel Range
objects directly as input and output arguments. When you pass a simple
variant type as an output parameter, the called method allocates the received
data and frees the original contents of the Variant. In this case it is sufficient
to dimension each output argument as a single Variant. When an object type
(like an Excel Range) is passed as an output parameter, the object reference is
passed in both directions, and the object’s Value property receives the data.

The following examples illustrate the process of passing input and output
parameters from VBA to Excel builder component class methods.

The first example is a formula function that takes two inputs and returns one
output. This function dispatches the call to a class method that corresponds to
a MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object
Dim y As Variant

On Error Goto Handle Error

3-9

3 Programming with MATLAB Builder for Excel

3-10

aClass = CreateObject("mycomponent.myclass.1 _0")
Call aClass.foo(1,y,x1,x2)
foo =y
Exit Function
Handle Error:
foo = Err.Description
End Function

The second example rewrites the same function as a subroutine and uses Excel
ranges for input and output.

Sub foo(Rout As Range, Rin1 As Range, Rin2 As Range)
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Rout,Rin1,Rin2)
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Processing varargin and varargout Arguments

Processing varargin and varargout Arguments

When varargin and/or varargout are present in the original MATLAB
function, these parameters are added to the argument list of the class method
as the last input/output parameters in the list. You can pass multiple
arguments as a varargin array by creating a Variant array, assigning each
element of the array to the respective input argument.

The following example creates a varargin array to call a method resulting from
a MATLAB function of the form y = foo(varargin).

Function foo(x1 As Variant, x2 As Variant, x3 As Varaint, _
x4 As Variant, x5 As Variant) As Variant
Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error

v(1l) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5

aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo =y
Exit Function
Handle_Error:
foo = Err.Description
End Function

The MWUtil class included in the MWComUtil utility library provides the MWPack
helper function to create varargin parameters. See “Utility Library” on
page D-1 for more details.

The next example processes a varargout parameter into three separate Excel
Ranges. This function makes use of the MWUnpack function in the utility library.
The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Rout1 As Range, Rout2 As Range, Rout3 As Range, _
Rin1 As Range, Rin2 As Range)
Dim aClass As Object

3-11

3 Programming with MATLAB Builder for Excel

3-12

Dim aUtil As Object
Dim v As Variant

On Error Goto Handle Error

aUtil = CreateObject("MWComUtil.MWUtil")

aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Rin1,Rin2)

Call autil.MwWUnpack(v,0,True,Rout1,Rout2,Rout3)
Exit Sub

Handle_ Error:

MsgBox (Err.Description)

End Sub

Handling Errors During o Method Call

Handling Errors During a Method Call

Errors that occur while creating a class instance or during a class method
create an exception in the current procedure. Visual Basic provides an
exception handling capability through the On Error Goto <label> statement,
in which the program execution jumps to <label> when an error occurs.
(<label> must be located in the same procedure as the On Error Goto
statement). All errors are handled this way, including errors within the
original MATLAB code. An exception creates a Visual Basic ErrObject object
in the current context in a variable called Err. (See the Visual Basic for
Applications documentation for a detailed discussion on VBA error handling.)
All of the examples in this section illustrate the typical error trapping logic
used in function call wrappers for Excel builder components.

3-13

3 Programming with MATLAB Builder for Excel

3-14

Modifying Flags

Each Excel builder component exposes a single read/write property named
MWFlags of type MWFlags. The MWFlags property consists of two sets of
constants: array formatting flags and data conversion flags. The data
conversion flags change selected behaviors of the data conversion process from
Variants to MATLAB types and vice versa. By default, Excel builder
components allow setting data conversion flags at the class level through the
MWFlags class property. This holds true for all Visual Basic types, with the
exception of the Excel builder MWStruct, MWField, MWComplex, MWSparse, and
MWArg types. Each of these types exposes its own MWFlags property and ignores
the properties of the class whose method is being called. The MWArg class is
supplied specifically for the case when a particular argument needs different
settings from the default class properties.

This section provides a general discussion of how to set these flags and what
they do. See “Class MWFlags” on page D-9 for a detailed discussion of the
MWFlags type, as well as additional code samples.

Array Formatting Flags

Array formatting flags guide the data conversion to produce either a MATLAB
cell array or matrix from general Variant data on input or to produce an array
of Variants or a single Variant containing an array of a basic type on output.

The following examples assume that you have referenced the MWComUtil
library in the current project by selecting Tools -> References... and selecting
MWComUtil 1.0 Type Library from the list.

Sub foo()
Dim aClass As mycomponent.myclass
Dim vari(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle Error

vari(1,1) = 11#
vari(1,2) = 12#
vari(2,1) = 21#
vari(2,2) = 22#

x(1,1) = 11

Medifying Flags

= 12

(1,2)
) = 21
)

X (1
x(2,
x(2,
var2 X
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub
Handle Error:
MsgBox (Err.Description)
End Sub

22

Here, two Variant variables, var1 and var2 are constructed with the same
numerical data, but internally they are structured differently. var1 is a 2-by-2
array of Variants with each element containing a 1-by-1 Double, while var2 is
a 1-by-1Vvariant containing a 2-by-2 array of Doubles. According to the default
data conversion rules listed in Table B-3, COM VARIANT to MATLAB
Conversion Rules, on page B-10, var1 converts to a 2-by-2 cell array with each
cell occupied by a 1-by-1 double, and var2 converts directly to a 2-by-2 double
matrix. The InputArrayFormat flag controls how arrays of these two types are
handled. As it turns out, the two arrays in the previous example both convert
to double matrices because the default value for the InputArrayFormat flag is
mwArrayFormatMatrix. This default is used because, as it turns out, array data
originating from Excel ranges is always in the form of an array of Variants
(like var1 of the previous example), and MATLAB functions most often deal
with matrix arguments. But what if you really want a cell array? In this case,
you set the InputArrayFormat flag to mvArrayFormatCell. Do this by adding
the following line after creating the class and before the method call.

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting this flag presents all array input to the compiled MATLAB function as
cell arrays.

Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

AutoResizeOutput is used for Excel Range objects passed directly as output
parameters. When this flag is set, the target range automatically resizes to fit

3-15

3 Programming with MATLAB Builder for Excel

3-16

the resulting array. If this flag is not set, the target range must be at least as
large as the output array or the data is truncated.

The TransposeOutput flag transposes all array output. This flag is useful when
dealing with MATLAB functions that output one-dimensional arrays. By
default, MATLAB realizes one-dimensional arrays as 1-by-n matrices (row
vectors) that become rows in an Excel worksheet.

You may prefer worksheet columns from row vector output. This example
auto-resizes and transposes an output range.

Sub foo(Rout As Range, Rin As Range)
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.foo(1,Rout,Rin)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Data Conversion Flags

Data conversion flags deal with type conversions of individual array elements.
The two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from VBA to MATLAB.
Consider the example

Sub foo()
Dim aClass As mycomponent.myclass
Dim vari, var2 As Variant
Dim y As Variant

On Error Goto Handle Error

varl = 1

var2 = 2#

Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,vart,var2)

Exit Sub

Medifying Flags

Handle Error:
MsgBox (Err.Description)
End Sub

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double. If the original MATLAB function expects
doubles for both arguments, this code might cause an error. One solution is to
assign a double to vari, but this may not be possible or desirable. In such a
case set the CoerceNumericToType flag to mwTypeDouble, causing the data
converter to convert all numeric input to double. In the previous example,
place the following line after creating the class and before calling the methods.

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

The InputDateFormat flag controls how the VBA Date type is converted. This
example sends the current date and time as an input argument and converts it
to a string.

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle Error

today = Now

Set aClass = New mycomponent.myclass

aClass. MWFlags.DataConversionFlags.InputDateFormat =
mwDateFormatString

Call aClass.foo(1,y,today)

Exit Sub
Handle Error:

MsgBox (Err.Description)
End Sub

The next example uses an MWArg object to modify the conversion flags for one
argument in a method call. In this case the first output argument (y1) is
coerced to a Date, and the second output argument (y2) uses the current default
conversion flags supplied by aClass.

3-17

3 Programming with MATLAB Builder for Excel

Sub foo(y1l As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg
Dim today As Date

On Error Goto Handle Error
today = Now
Set aClass = New mycomponent.myclass
Set y1 = New MWArg
y1.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp.Value
Exit Sub

Handle Error:
MsgBox (Err.Description)

End Sub

3-18

Usage Examples

Magic Square Examples (p. 4-2)

Using Multiple Files and Variable
Arguments (p. 4-8)

Spectral Analysis Example (p. 4-18)

Creates a magic square from a single input integer.

Plots a line from 1 to an input number.

Creates of a comprehensive Excel add-in to perform spec-
tral analysis.

4 Usage Examples

4-2

Magic Square Examples

The M-file mymagic takes a single input, an integer, and creates a magic square
of that size.

The Excel file mymagic.x1s uses this function in three different ways:

® The first illustration calls the function mymagic with a value of 4. The
function returns a magic square of size 4 and populates a range of Excel cells
with that magic square.

¢ The second illustration uses the transpose flag to transpose a magic square
of size 4.

® The third illustration resizes the output to a higher value and moves its
location within the Excel worksheet.

Note To get started, copy the distributed directory x1magic from
<matlab>\toolbox\matlabxl\examples\xlmagic to <matlab>\work.

Creating the Project

From the MATLAB command prompt change directories to <matlab>\work.
Enter the command mx1tool to start the MATLAB Builder window. From the
File menu select New Project. This opens the New Project Settings dialog.

Magic Square Examples

«): New Project Settings

rProject naming

=10l x|

Component name

Class name

I Add ==
Remaove

Frojectversion

Classes

Froject directory

|
Erowse...

rCompiler option
[~ Creste a zingleton MCR
[Build debug version

[Show verbose output

Ok | Cancel |

Help

Figure 4-1: Empty New Project Settings Dialog Box

On the New Project Settings dialog, enter the settings as listed below.

¢ In the Component name text block enter the component name x1magic.

Press the Tab key to move to the Class name text block.

¢ This automatically fills in the Classes field with the name x1magicclass.

Leave this text in the Classes field.

® The version has a default of 1.0. Leave this version as is.

¢ The Project directory field contains a default of a combination of the
directory where Excel builder was started, <matlab>\work, and the
Component name, x1magic. You can change this to any directory that you
choose. If the directory you choose does not exist, you will be asked to create

it.

¢ Leave all Compiler options unselected.

The New Project Settings dialog now looks like Figure 4-2.

4-3

4 Usage Examples

4-4

«): New Project Settings - 10 =l
rProject naming

Component name

lmaic
Classes

eSS REE magicclass

I Add ==
Remove

Frojectversion

1.0

Froject directory

Default directory name depends
upon the location of MATLAB on

|D:1W0rKLxImagic

Browse... your machine. You can choose an
~Compiler option alternative directory if you do not
[Creste = singleton MCR want to accept the default.

[Build debug version

[Show verbose output

Ok | Cancel | Help |

Figure 4-2: New Project Settings with Entries

¢ Click OK to create the x1magic project.

Summary of Project Settings
Component name: x1magic

Class name: x1magic
Project version: 1.0
Project directory: (accept default or choose another directory)

Compiler options: (leave unselected)

Building the Project
e On the MATLAB Builder window click the Add File button.

® Select the file mymagic.m from the directory <matlab>\work\xlmagic and
click Open.

Magic Square Examples

¢ Select Excel/COM Object from the Build menu.

Adding the MATLAB Builder for Excel COM Function
to Excel

¢ Start Excel on your system.
¢ Open the file <matlab>\work\x1lmagic\mymagic.x1ls.

Note If you receive an Excel prompt informing you that this file contains
macros, select the Enable Macros option to run this example.

lllustration 1. Output Magic Square Results to Excel

From the main Excel window (not the Visual Basic Editor), display the Macro
dialog either by selecting the Alt and F8 keys at the same time or by selecting
the Macros option from Tools -> Macro.

Select mymagic from the list and click Run. This procedure returns a magic
square of size 4 beginning in cell B2.

A [B [¢ b [E [F |
4 16 2 3 13
5 11 10 B
9 7 B 12
4 14 15 1

The above example runs the macro "mymagic” which
populates the cells B2 through ES with a magic square of 4
Select Tools-=Macro-> Macros to run this example

e

Figure 4-3: Magic Square Returned to Excel Worksheet

lllustration 2. Transpose the Output

Reopen the Macro dialog, select the mymagic_transpose macro and click the
Run button. This procedure returns a magic square of size 4 transposed,
beginning in cell B14.

4-5

4 Usage Examples

113
| 14 | 4 16 a 4
|15 2 7 14
| 16 | 3 5

17 13 g 12
| 15|
| 19 | The abave example runs the macro "mymagic_transpose” which
| 20 |transposes the results of a magic sgquare of 4 and populates the
| 21 |cells B14 through E17

22 |Select Tools-=Macro-> Macros to run this example

Figure 4-4: Transposed Magic Square

lllustration 3. Resize the Output

Reopen the Maecro dialog, select the mymagic_resize macro, and click Run.
This procedure returns a magic square of size 4 beginning in cell B32.

Change the value of 4 in cell A32 to a higher value and rerun this macro. A
magic square of the size you specified in cell A32 is returned, beginning in cell

B32.
ZThe below example runs the macro "mymagic_resize" which
| 28 |has an initial range for & magic square of 4 but will resize if
| 29 |the output is larger. Gradually increase the number in cell A32 and rerun the macra.
| 30 | CAUTION: Resizing will over write any existing data in the target cells
k)l
32 il B4 2 3 51 B0 3 7 570
133 l 9 55 54 12 13 51 50 16!
| 34 | 1 17 47 45 20 B 43 42 2
|35 | 1 40 2 e 7 35 30 Kl 33l
| 36 | : 32 34 35 2 =] 33 35 25
|37 | 1 4 23 22 44 45 19 18 481
| 35 | : 49 15 14 52 53 1 10 56y
E ____B___S$____ 5 ____ §____A____B2___®63____
40

Figure 4-5: Resized Magic Square

Inspecting the Visual Basic Code

On the Excel main window select Visual Basic Editor from the
Tools -> Macro menu.

From the Visual Basic Editor, in the Project - VBAProject window,
double-click to expand the project VBAProject (mymagic.xls).

Expand the Modules folder and double-click on the Module1 module. This opens
the VB Code window with the code for this project.

4-6

Magic Square Examples

4 Microsoft ¥isual Basic - mymagic.xls

JEiIe Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help

ijlﬁvnlxamlnnluu.gl%@ 2|2]
: R

mymagic.xls - Modulel {Code)

R

@ AcrobatPDFWriter {PDFWriter.xla)
@ Excllink {excllink.xla}
¥BAProject {(mymagic.xla)

E@ ¥BAProject (mymagic.xls)
[25 Microsoft Excel Objects
Sheet1 (Magic Square Example)
48 Thisworkbook

I{General} j Imymagic

Dim MCLUtil As Chject
Dim bModulelInitialized As Boolean

FPriwvate S3ub InitModule()
If Not hModulelInitialized Then
| -5 Modules on Eerr.GDTD HandJ..e_Eerr
| ‘a Modulel If MCLU:til Is.Nothlng Then.))
Set MCLUtil = CreateChject ("MWComUcil.MWTcil
! End If
i Call MCLUCil.MWInitdipplication(ipplication)
bhModuleInitialized = True
Exit Sub
Handle Error:
hModuleInitialized = False
End If
End 3ub

Figure 4-6: Visual Basic Code Window

4-7

4 Usage Examples

Using Multiple Files and Variable Arguments

The M-file, myplot, takes a single integer input and plots a line from 1 to that
number.

The M-file, mysum, takes an input of varargin of type integer, adds all the
numbers, and returns the result.

The M-file, myprimes, takes a single integer input n and returns all the prime
numbers less than or equal to n.

The Microsoft Excel file, mymulti.xls, demonstrates these functions in a
multiple of ways.

Note To get started copy the distributed directory x1multi from
<matlab>\toolbox\matlabxl\examples\x1lmulti to <matlab>\work.

Creating the Project

From the MATLAB command prompt, change directories to <matlab>\work.
Enter the command mx1tool to start the MATLAB Builder window. From the
File menu select New Project. This opens the New Project Settings dialog
box.

Using Multiple Files and Variable Arguments

«): New Project Settings

rProject naming

=10l x|

Component name

Class name

I Add ==
Remaove

Frojectversion

Classes

Froject directory

|
Erowse...

rCompiler option
[~ Creste a zingleton MCR
[Build debug version

[Show verbose output

Ok | Cancel |

Help

Figure 4-7: Empty New Project Settings Dialog

On the New Project Settings dialog, enter the settings as listed below.

¢ In the Component name text block enter the component name x1multi.
Press the Tab key to move to the Class name text block.

¢ This automatically fills in the Classes field with the name x1lmulticlass.

Leave this text in the Classes field.

® The version has a default of 1.0. Leave this version as is.

¢ The Project directory field contains a default of a combination of the
directory where Excel builder was started, <matlab>\work, and the
Component name, x1multi. You can change this to any directory that you
choose. If the directory you choose does not exist, you will be asked to create

it.

¢ Leave all other Compiler options unselected.

4-9

4 Usage Examples

The New Project Settings dialog now looks like Figure 4-8.

«): New Project Settings - 10 =l
rProject k ing

Component name

lemulti
Classes

eSS REE multiclass

I Add ==
Remove

Frojectversion

1.0

Froject directory

Default directory name depends

upon the location of MATLAB on
Browse. | your machine. You can choose an

rCompiler aption

| Dwarkedrmuti

alternative directory if you do

I Creste a singleton MCR not want to accept the default.
[Build debug version

[Show verbose output

Ok | Cancel | Help |

Figure 4-8: New Project Settings with Entries

¢ Click OK to create the xImulti project.

Summary of Project Settings
Component name: x1multi

Class name: x1multi

Project version: 1.0

Project directory: (accept default or choose another directory)
Project version: 1.0

Project directory: (accept default or choose another directory)

Compiler options: (leave unselected)

4-10

Using Multiple Files and Variable Arguments

Building the Project

¢ On the MATLAB Builder window click Add File

¢ Select the file myplot.m from the directory <matlab>\work\x1lmulti and click
Open.

¢ Repeat the above steps to add the files myprimes.m and mysum.m.
¢ Select Excel/COM Object from the Build menu.

Adding the MATLAB Builder for Excel COM Functions
to Excel

e Start Excel on your system.

¢ Open the file <matlab>\work\x1Imulti\mymulti.x1ls.

Note If you receive an Excel prompt informing you that this file contains
macros, select the Enable Macros option to run this example.

4-11

4 Usage Examples

4-12

A B c D E F G H |

L (SENRERUR TN UE NN Y R S o N e Feetl Bl sl vt et Bl el R Bt

E3
36|
Ed
E
33|
| 40
| 41
42

Sample: myplot

In this simple example we are just plotting a line from 1 to whatever
number is supplied as an argument to the function in cell A7.

a

Sample: mysum

In the below example we are just adding up a series of numbers that
are explicitly stated.
55

In the below example we are just adding up a series of numbers that
are from a range of cells.
55 1 2 3 4] G 7 g

In the below example, we are adding up 3 separate ranges of cells.

The ranges do not need to be the same size nor do all the cells in the range need to have data in them.

120 1 2 3 4 5 g 7 g
1 2 3 4 5 5]
1 2 3

In the below example, we are adding 10 to a range of cells.
16 1 2 3

Sample: myprimes

The below example runs the macro "myprimes" which

has an initial range for 4 prime numbers but will resize if

the output is larger. Gradually increase the number in cell A42 and rerun the macro.
CAUTION: Resizing will over write any existing data in the target cells

Figure 4-9: mymuilti.xls

10
10

Using Multiple Files and Variable Arguments

lllustration 4: Calling myplot

This illustration calls the function myplot with a value of 4. To execute the
function, make A7 the active cell. Press F2 and then Enter.

Bl slrulti.xls
A B c D E F G

Sample: myplot

In this simple example we are just plotting a line from 1 to whatever
nurmber is supplied as an argument to the function in cell A7,

ol

Figure 4-10: Calling myplot with a Value of 4

This procedure plots a line from 1 to 4 in a MATLAB figure window. This
graphic can be manipulated as if it were called from MATLAB directly. The
calling cell contains 0 because the function does not return a value.

4-13

4 Usage Examples

4-14

<) Figure No. 1 i -0l =]

File Edit Yiew Insert Tools Window Help

Deda "A A/ 2o

4

251 B

1 15 2 25 3 35 4

Figure 4-11: myplot Output

lllustration 5: Calling mysum Four Different Ways

This illustration calls the function mysum in four different ways. The first

(cell A14) takes the values 1 through 10, adds them, and returns the result of
55. The second (cell A19) takes a range object that is a range of cells with the
values 1 through 10, adds them, and returns the result of 55. The third

(cell A24) takes several range objects, adds them, and returns the result of 120.
This illustration demonstrates that the ranges do not need to be the same size
and that all the cells do not have to have a value. The fourth (cell A30) takes a
combination of a range object and explicitly stated values, adds them, and
returns the result of 16.

Using Multiple Files and Variable Arguments

S

SEl

N

]

=

@

=

=

@

@

=
5

5]

]
S

The

ample: mysum

In the below example we are just adding up a series of numbers that
are explicitly stated

55

In the below example e are just adding up a series of numbers that
are from a range of cells

55 1 2 3 4] B 7 8 a 10

In the below example, we are adding up 3 separate ranges of cells

ranges do not need to be the same size nor do all the cells in the range need to have data in them.

120 1 2 3 4 g B 7 8 9 10
1 2 3 4 5 3 8 9 10 11
1 2 3

In the below example, we are adding 10 to a range of cells
2 3

P S SIS
B EEEEIEE S

Figure 4-12: Four Different Calls to mysum

Th

is illustration runs when the Excel file is opened. To reactivate the

illustration, make the appropriate cell active. Then press F2 followed by Enter.

In

ustration 6: myprimes Macro
this illustration the macro myprimes calls the function myprimes.m with an

initial value of 10 in cell A42. The function returns all the prime numbers less
than 10 to cells B42 through E42.

3
|
136 |
7 |
136 |
139 |
4
41

=

2

Sample: myprimes

The below example runs the macro "myprimes" which

has an initial range for 4 prime numbers but will resize if

the output is larger. Gradually increase the number in cell A42 and rerun the macro.
CAUTION: Resizing will over write any existing data in the target cells

Figure 4-13: myprimes Macro

To execute the macro, from the main Excel window (not the Visual Basic
Editor), display the Macro dialog either by selecting the Alt and F8 keys at the
same time or by selecting the Macros option from Tools -> Macro.

Select myprimes from the list and click Run.

4-15

4 Usage Examples

Sample: myprimes

3
35|

36
37 |The below example runs the macro "myprimes" which

38 |has an initial range for 4 prime numbers but will resize if
39 |the output is larger. Gradually increase the number in cell A42 and rerun the macro.

40 [CAUTION: Resizing will over write any existing data in the target cells

B

i e o el e e e e e o e e e el e e e

sl 5]
2
(o]
(T3]
[a7]
=

Figure 4-14: myprimes Output for Value of 10

This function automatically resizes if the returned output is larger than the
output range specified. Change the value in cell A42 to a number larger than
10. Then rerun the macro. The output returns all prime numbers less than the
number you entered in cell A42.

Sample: myprimes

The below example runs the macro "myprimes" which

has an initial range for 4 prime numbers but will resize if

the output is larger. Gradually increase the number in cell A42 and rerun the macro.
CALITION: Resizing will over write any existing data in the target cells

200 3 E] 5 7 11 13 17 19

of | e e L0 D DD D0 D0 D
M| = O |0~ 0 M) b

Figure 4-15: myprimes Output for Value > 10

Inspecting the Visual Basic Code
From Excel select Visual Basic Editor from the Tools -> Macro menu.

From the Visual Basic Editor, in the Project - VBAProject window, expand the
project VBAProject (mymulti.xls).

Expand the Modules folder and double click on the Module1 module. This opens
the VB Code window with the code for this project.

4-16

Using Multiple Files and Variable Arguments

rosoft ¥isual Basic - xlmi

JEiIe Edit Yiew Insert Format Debug Runm Tools Add-Ins Window Help

Ma-|seaa oo, g ekl BEE | F nyan
Project - ¥BAProject X simulti.xls - Modulel {Code)
B |

=% AcrobatPDFWriter (PDFWriter.sla)

I(General}

(7] Microsoft Excel Objects
-5 Modules

«&; AutoExec

2 AutoExit

%42 DistMon

4% IniFiles

452 RegistrationDatabase

‘5& Skrings

H- &% Excllink {excllink.xla)
I'_—'I@ ¥BAProject {(xlmulti.xls)

55 Microsoft Excel Objects
Sheet1 (Shest1)
SheetZ (Sheetz)
Sheet (Shest3)
47 Thiswarkbook
=5 Modules

«&; Modulel

Dim MCLUtil As Chject
Dim bModulelInitialized As Boolean

Priwvate S3ub InitModule()
If Not hModulelInitialized Then
On Error GoTo Handle Error
If MCLUtil Is Wothing Then
Zet MCLUtil = CreateChject ("MWComUtil.MWUcil'
End If
Call MCLUCil.MWInitdpplicationiipplication)
bhModuleInitialized = True
Exit Zub
Handle Error:
hModuleInitialized = False
End If
End 3ub

Figure 4-16: Visual Basic Code for mymulti.xls

4-17

4 Usage Examples

4-18

Spectral Analysis Example

This example illustrates the creation of a comprehensive Excel add-in to
perform spectral analysis. It requires knowledge of Visual Basic forms and
controls, as well as Excel workbook events. See the VBA documentation for a
complete discussion of these topics.

The example creates an Excel add-in that performs an FFT on an input data
set located in a designated worksheet range. The function returns the FFT
results, an array of frequency points, and the power spectral density of the
input data. It places these results into ranges you indicate in the current
worksheet. You can also optionally plot the power spectral density. You develop
the function so that you can invoke it from the Excel Tools menu and can select
input and output ranges through a GUL

To create this add-in requires four basic steps:
1 Build a standalone COM component from MATLAB code.

2 Implement the necessary VBA code to collect input and dispatch the calls to
your component.

3 Create the GUI.

4 Create an Excel add-in and package all necessary components for
application deployment.

Building the Component

Your component will have one class with two methods, computefft and
plotfft. The computefft method computes the FFT and power spectral
density of the input data and computes a vector of frequency points based on
the length of the data entered and the sampling interval. The plotfft method
performs the same operations as computefft, but also plots the input data and
the power spectral density in a MATLAB figure window. The MATLAB code for
these two methods resides in two M-files, computefft.m and plotfft.m.

computefft.m:

function [fftdata, freq, powerspect] = computefft(data, interval)
if (isempty(data))
fftdata = [1;
freq = [1];

Spectral Analysis Example

powerspect = [1];
return;
end
if (interval <= 0)
error('Sampling interval must be greater then zero');
return;
end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)
return;
end
t = O:interval: (len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:1len/2), powerspect(1:1len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To proceed with the actual building of the component, follow these steps:

1 Start mx1tool. See “Graphical User Interface Menus” on page 2-2 for a
discussion of using mx1tool to build a COM component from a collection of
MATLAB M-files.

2 Create a new project with these settings:

* Component name: Fourier
¢ Class name: Fourier

® Project version: 1.0

Add the computefft.mand plotfft.m M-files to the project.

4-19

4 Usage Examples

3 Save the project. Make note of the project directory because you will refer to
it later when you save your add-in.

4 Click Build to create the component.

Integrating the Component with Visual Basic for
Applications

Having built your component, you can implement the necessary VBA code to
integrate it into Excel. Follow these steps to open Excel and select the libraries
you need to develop the add-in.

1 Start Excel.
2 From the Excel main menu, select Tools->Macro->Visual Basic Editor.

3 When the Visual Basic Editor starts, select Tools->References to display
the Project References Dialog. Select Fourier 1.0 Type Library and
MWComUtil 7.1 Type Library on the list.

Creating the Main VB Code Module For the Application

The add-in requires some initialization code and some global variables to hold
the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

1 Right-click on the VBAProject item in the project window and select
Insert->Module from the pop-up menu.

2 A new module appears under Modules in the VBA Project. In the module’s
property page, set the Name property to FourierMain. See the next figure.

4-20

Spectral Analysis Example

Zgi Microsoft Visual Basic - Fourier.xls - [FourierMain (Code)] =181 x|
| Ele Edt Wew Insert Format Debug Run ook AddIns Window Help =13 5[‘
|EE-Hieedoc] o akbEE2 3| .

I(Generﬂl) j I(I]el:larmiﬂns) j

[T

E-&} YBAProject (Fourier.xls) ! FourierMain - Main module stores global state of controls =

osoft Excel Objects
Shestl (Shestl) '

SheetZ (Shest2) 'Global instance of Fourier ohiect

Sheet3 (Shestd) Public theFourier As Fourier.Fourier

Thishorkbook 'Global instance of MWComplex to accept FFT of input range
(2 Forms Public theFFTData ks MUComplex

'Input data range

Public Inpucbata As Range

'Sampling interval

Public Interval ks Double

"Output fregquency data range

Public Freguency As Range

'Output power spectral density range

Public PowerSpect ks Range

i FourierMain 'Holds the state of plot flag

Public bPlot s Boolean

'Global instance of MUUcil shject

Public theUril As MUUcil

‘Module-is-initialized flag

Public bInitiamlized ks Boolean

Private Sub LoadFourier ()

‘Initializes globals and Loads the Spectral inalysis form

i | LF

and provides initialization code

Properties - FourierM
[FourierMain Module

Alphabetic |Cateanizad |

L] e

[<Ready []]
Expression [alue [Type -
LSS (2

Figure 4-17: VBA Project: Insert->Module
3 Enter the following code in the FourierMain module:

FourierMain - Main module stores global state of controls

' and provides initialization code

Public theFourier As Fourier.Fourier 'Global instance of Fourier object
Public theFFTData As MWComplex 'Global instance of MWComplex to accept FFT

Public InputData As Range 'Input data range

Public Interval As Double 'Sampling interval

Public Frequency As Range 'Output frequency data range

Public PowerSpect As Range 'Output power spectral density range
Public bPlot As Boolean 'Holds the state of plot flag

Public theUtil As MWUtil 'Global instance of MWUtil object
Public bInitialized As Boolean 'Module-is-initialized flag

4-21

4 Usage Examples

Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form
Dim MainForm As frmFourier
On Error GoTo Handle_Error
Call InitApp
Set MainForm = New frmFourier
Call MainForm.Show
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel
If bInitialized Then Exit Sub
On Error GoTo Handle_Error
If theUtil Is Nothing Then
Set theUtil = New MWUtil
Call theUtil.MWInitApplication(Application)
End If
If theFourier Is Nothing Then
Set theFourier = New Fourier.Fourier
End If
If theFFTData Is Nothing Then
Set theFFTData = New MWComplex
End If
bInitialized = True
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Creating The Visual Basic Form

The next step in the integration process develops a user interface for your
add-in using the Visual Basic Editor. Follow the steps outlined here to create a
new user form and populate it with the necessary controls:

1 Right-click on the VBAProject item in the project window and select
Insert->UserForm from the pop-up menu.

2 A new form appears under Forms in the VBA Project. In the form’s property

page, set the name property to frmFourier and the Caption property to
Spectral Analysis.

4-22

Spectral Analysis Example

icrasoft Visual Basic - Fourier.xs - [Fourier.ls - frmFourier (UserForm)] I [1]
| Ele Edt Wew Insert Format Debug Run ook AddIns Window Help _|a 5[‘

&% vBAProject (Book1) 7[;”1?;2: Cantrol |
-85 VBAProject (Fourier.xls) 2 :
51455 Micrasoft Excsl Obscts [|

Sampling Interval: l—

I Plat time domain signal and power spectral density

=455 Forms
P FrmFourier — CUtpLE Data
455 Modules Fraquency:
Lq# FourierMain I J
= FFT - Real Part:
[frmFourier UserForm | | |
Alphabetic | categorized | FFT - Imaginary Part:
) frmFourier -] | |
ackColor [aHs000000F2.
lBorderColor W 2HB00000128, Power Spectral Density:
Borderstyle 0 - FmBorderStylelone | J
Caption Spectral Analysis o
Cycle 0 - FnCycleAlForms
D awbLfFer 32000 Cancel I
Enabled True fos
Fori: Tahoma
ForeColor W &Hann0001 28
Height 31875
HelpContextID i
ecoStrolferstisble 3 - serolBarsBoth
Left i
Mouselcon (Hone) [<Readys |
MousePointer 0 - FnMousePointst Defaulk Expression [vale TType -
Ficture (Hone) L
ictureflignment 2 - FmPictursAlignmentCenter
FictureSizetods 0 - FPictureSizeModeClip
FictureTilng False
RightToLeft False
5crollBars 0 - FmSerolBarshione
5crolHeight i
scrollLeft i
5croliTop 0 x|

L]

Figure 4-18: Creating the Visual Basic Form

3 Now add a series of controls to the blank form to complete the dialog, as
summarized in the following table.

Control Type Control Name Properties Purpose
Frame Frame Caption = Input Data Groups all input
controls.

Label Label1 Caption = Input Data: Labels the RefEdit for
input data.

4-23

4 Usage Examples

4-24

Control Type

Control Name

Properties

Purpose

RefEdit

Label

CheckBox

Frame

Label

RefEdit

Label

RefEdit

Label

RefEdit

Label

RefEdit

refedtInput

Label2

chkPlot

Frame2

Label3

refedtFreq

Label4d

refedtReal

Label5

refedtImag

Label6

refedtPowSpect

Caption = Sampling Interval

Caption = Plot time domain
Signal and Power Spectral
Density

Caption = Qutput Data

Caption = Frequency:

Caption = FFT - Real Part:

Caption = FFT - Imaginary
Part:

Caption = Power Spectral
Density

Selects range for input
data.

Labels the TextBox for
sampling interval.

Plots input data and
power spectral density.

Groups all output
controls.

Labels the RefEdit for
frequency output.

Selects output range for
frequency points.

Labels the RefEdit for
real part of FFT.

Selects output range for
real part of FFT of input
data.

Labels the RefEdit for
imaginary part of FFT.

Selects output range for
imaginary part of FFT of
input data.

Labels the RefEdit for
power spectral density.

Selects output range for
power spectral density of
input data.

Spectral Analysis Example

Control Type Control Name Properties Purpose

CommandButton btnOK Caption = 0K Executes the function

and dismisses the dialog
Default = True

CommandButton btnCancel Caption = Cancel Dismisses the dialog
without executing the

Cancel = True function.

Figure 4-19, Layout of Controls on Main Form, on page 4-26 shows the controls
layout on the form.

4-25

4 Usage Examples

Spectral Analysis

frmFourier

l

Labell — Input Daka = Framel
well —— Inpukt Caka:
;<|I refedtinput
Label2
” Sampling Inkerwval: edtSample
chkPlot [Plak time dormain signal and power speckral density
Label3 — ouktput Data Frame2
abe > Frequency:
I ;rl’ n:fedFreq
Labeld > ket - Real Part:
I ;I‘L refediReal
Label5 s FFT - Imaginary Park:
I - I/|\ refedtimag
Label6 > Power Spectral Density;
I ;% refedtPowSpec
t
btnOK QK Cancel |< btnCance

Figure 4-19:

Layout of Controls on Main Form

When the form and controls are complete, right-click on the form and select
View Code from the pop-up menu. The following code listing shows the code to
implement. Note that this code references the control and variable names
listed above. If you have given different names for any of the controls or any

global variabl

4-26

e, change this code to reflect those differences.

Spectral Analysis Example

‘frmFourier Event handlers
Private Sub UserForm_Activate()
‘UserForm Activate event handler. This function gets called before
'showing the form, and initializes all controls with values stored
'in global variables.
On Error GoTo Handle_Error
If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub
'Initialize controls with current state
If Not InputData Is Nothing Then
refedtInput.Text = InputData.Address
End If
edtSample.Text = Format(Interval)
If Not Frequency Is Nothing Then
refedtFreq.Text = Frequency.Address
End If
If Not IsEmpty (theFFTData.Real) Then
If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then
refedtReal.Text = theFFTData.Real.Address
End If
End If
If Not IsEmpty (theFFTData.Imag) Then
If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then
refedtImag.Text = theFFTData.Imag.Address
End If
End If
If Not PowerSpect Is Nothing Then
refedtPowSpect.Text = PowerSpect.Address
End If
chkPlot.Value = bPlot
Exit Sub
Handle_Error:
MsgBox (Err.Description)
End Sub

Private Sub btnCancel_Click()
‘Cancel button click event handler. Exits form without computing fft
‘or updating variables.
Unload Me
End Sub
Private Sub btnOK_Click()
'OK button click event handler. Updates state of all variables from controls
‘and executes the computefft or plotfft method.
Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form
On Error Resume Next

4-27

4 Usage Examples

'Process inputs
Set R = Range(refedtInput.Text)
If Err <> 0 Then
MsgBox ("Invalid range entered for Input Data")
Exit Sub
End If
Set InputData = R
Interval = CDbl(edtSample.Text)
If Err <> 0 Or Interval <= 0 Then
MsgBox ("Sampling interval must be greater than zero")
Exit Sub
End If
'Process Outputs
Set R = Range(refedtFreq.Text)
If Err = 0 Then
Set Frequency = R
End If
Set R = Range(refedtReal.Text)
If Err = 0 Then
theFFTData.Real = R
End If
Set R = Range(refedtImag.Text)
If Err = 0 Then
theFFTData.Imag = R
End If
Set R = Range(refedtPowSpect.Text)
If Err = 0 Then
Set PowerSpect = R
End If
bPlot = chkPlot.Value
'Compute the fft and optionally plot power spectral density
If bPlot Then
Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_
InputData, Interval)
Else
Call theFourier.computefft (3, theFFTData, Frequency, PowerSpect,_
InputData, Interval)
End If
GoTo Exit_Form
Handle_Error:
MsgBox (Err.Description)
Exit_Form:
Unload Me
End Sub

4-28

Spectral Analysis Example

Adding The Spectral Analysis Menu Item to Excel

The last step in the integration process adds a menu item to Excel so that you
can invoke the tool from Excel’s Tools menu. To do this you add event handlers
for the workbook’s AddinInstall and AddinUninstall events that install and
uninstall menu items. The menu item calls the LoadFourier function in the

FourierMain module. Follow these steps to implement the menu item:

1 Right-click on the ThisWorkbook item in the Visual Basic project window
and select View Code from the pop-up menu.

‘i Micrasoft Visual Basic - Fourier.xls - [ThisWorkbook (Code}]

| 4% Fle Edt view Insert Format Debug Run Took Add-Ins Window Help

=loix|
=5l x|

|E

-l easo o)) e[HE S 2 B

Project - YBAProject
= |

¥BAProject (Baok1)
&% ¥BAProject {Fourier.xls)
)45 Microsoft Excel Objects

heet1 (sheet1)
heetz (sheet2)
heet (sheet3)

45 Thiswarkbook
=45 Forms

FrmFourier
=45 Modules

¥ FourierMain

Propetties - ThisWor|
[Thisworkbook workbaok
Alphabetic |Cateanizad |
fame) [
AcceptlabelsinFormulas False
AutolpdateFrequency 0

ChangeHistoryDuration 0

El
I= |

(ConflictResolution 1 - xlUserResolution
Date1904 False
DisplayDrawingObiects -4104 - xIDisplayShapes
Envelopevisible False

HasRoutingSlip False

HighlightChangesonscreen Falss

[workboalk x| [nadininstan

Private Sub Workbook_iddinInstall()

'Called when kddin is installed
Call hddFourierMenultem

End Sub

P

Private Sub WUorkbook_iddinUninstall ()

'Called when kddin is uninstalled
Call FemoveFourierMenultem

End Sub

Private Sub AddFourierMenultem()
Dim ToolsMenu ks ConmandBarPopup
Dim NevMenultem is CommandBarButton

‘Remove if already exists
Call RemoveFourierMenultem
'Find Tools menu
Set ToolsMenu = kpplication.CommandBars(1).FindControl (ID:=30007
If ToolsMenu Is Nothing Then Exit Sub
'hdd Spectral inalysis menu item
Set NevMenultem = ToolsMenu.Controls.hdd(Type:=msoControlButton
NewMenuItem.Caption = "Spectral Analysis..."
NewMenultem.Onketion = "LoadFourier"

End Sub

Private Sub RemoveFourierMenulter()
Dim CrdBar As CommandBar
Dim Cerl As CommandBarControl
On Error Resume Next
'Find tools menu and remove Spectral Analysis menu item

TemplateRemoveExtData Falss
UpdateRemoteReferences Trus

LsAddin False hd
KeepChangeHistary True _|_| L2
ListChangesOnflewshest Falss el i
FersonaltiewlistSettings True

PersonalViewPrintSettings True [<ready>
PrecisionasDisplayed False Exoression Tvalum TTope =
saved True

SaveLinkialuss True

ShowConfilictHistory False

Figure 4-20: Adding a Menu Item to Excel

2 Place the code below into the ThisWorkbook object.

4-29

4 Usage Examples

Private Sub Workbook_AddinInstall()

'Called when Addin is installed
Call AddFourierMenuItem

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled
Call RemoveFourierMenuItem

End Sub

Private Sub AddFourierMenuItem()
Dim ToolsMenu As CommandBarPopup
Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)
If ToolsMenu Is Nothing Then Exit Sub

'"Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."
NewMenuItem.OnAction = "LoadFourier"
End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item
Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

Saving the Add-in

Now that the Visual Basic coding is complete, you can save the add-in. Save
this file into the <project-directory>\distrib directory that mx1tool
created when building the project. Here, <project-directory> refers to the
project directory that mx1tool used to save the Fourier project. Name the
add-in Spectral Analysis.

Follow these steps to save the add-in:

1 From the main menu in Excel, select File->Properties.

4-30

Spectral Analysis Example

6

When the Workbook Properties dialog appears, select the Summary tab
and enter Spectral Analysis as the workbook title.

Click OK to save the edits.
Select File->Save As from the Excel main menu.

When the Save As dialog appears, select Microsoft Excel Add-In (*.xla) as
the file type, and browse to <project-directory>\distrib.

Enter Fourier.xla as the filename and click Save to save the add-in.

Testing The Add-in

Before distributing the add-in, test it with a sample problem. Spectral analysis
is commonly used to find the frequency components of a signal buried in a noisy
time domain signal. In this example you will create a data representation of a
signal containing two distinct components and add to it a random component.
This data along with the output will be stored in columns of an Excel
worksheet, and you will plot the time-domain signal along with the power
spectral density.

Follow the steps outlined below to create the test problem:

2

6

Start a new session of Excel with a blank workbook.
Select Tools->Add-Ins from the main menu.
When the Add-Ins dialog comes up, click Browse.

Browse to the <project-directory>\distrib directory, select Fourier.xla
and click OK.

The Spectral Analysis add-in appears in the available Add-Ins list and is
selected.

Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can display
the Spectral Analysis GUI by selecting Tools->Spectral Analysis. Before
invoking the add-in, create some data, in this case a signal with components at

4-31

4 Usage Examples

15 and 40 Hz. Sample the signal for 10 seconds at a sampling rate of 0.01 sec.
Put the time points into column A and the signal points into column B.

Creating the Data
Follow these steps to create the data:

1 Enter O for cell Al in the current worksheet.
2 Click on cell A2 and type the formula "= A1 + 0.01".

3 Click and hold on the lower right hand corner of cell A2 and drag the formula
down the column to cell A1001. This procedure fills the range A1:A1001 with
the interval 0 to 10 incremented by 0.01.

4 Click on cell B1 and type the formula "= SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND()". Repeat the drag procedure to copy this
formula to all cells in the range B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools->Spectral Analysis... from the main menu.
2 Click on the Input Data box.

3 Select the B1:B1001 range from the worksheet or type this address into
Input Data.

4 Click on the Sampling Interval box and type 0.01.
5 Select Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output, and likewise enter D1:D1001,
E1:E1001, and F1:F1001 for the FFT real and imaginary parts, and spectral
density.

7 Click OK to run the analysis.

The next figure shows the output.

4-32

Spectral Analysis Example

| fie Edt ew Incort Fomat Tods Dota Mindow e
DEEa8RY|[sBad[o o [@= 8% [@s o0 -0 ||
[eE
A | B | ¢ [D [E [F G | H | 1 [J [k [L WM [N [0 [=
] 0 0201422 0 5005243 0 1582797
2 001 2364545 01 844324 1112117 0269305 J
[3] 00 04141 0.2/ -0.26779 2589652 0082396
[4] 0.03 1956734 0.3 B.773018 2110449 0.285342 x|
[8| 004 -108867 04 -I0.035 249211 03875 -
3 005 -0.50068 05 1593 269405 0098962
[7 0.05 0992995 05 447353 9082895 0319473 Mgt i
007 0.2268 07 130441 019807 0412538 Input Data;
0.08 2495782 0.8 736004 2259507 0.243467
0.09 0853563 09 557995 -12.3651 0.442935 I E1:4EF1000 J
01 033184 1 3447282 4201183 0171853
011 00025 11 103208 527412 0386574 Sampling Interv oot
012 136424 12 928435 4187427 032208
0.13 12995 13 118624 6969041 0.426915
0.14 0204847 14 5311 10339 0187668 i si
O1e[T otoaal 1 e a3 s oot I¥ Plok time, domain signal and power spectral density
0.16 1640045 1.6 1.436592 116599 0.371698
017 048132 17 300437 339444 0143347
0.18 0211505 18 289991 571643 0202699 Crilinda
019 099357 1.9 1.121278 840099 0268019 Frequency:
02 0379924 2 280852 6592 0228561
021 183771 21 845165 15761 0271872 I $Cs1:$C1000 J
022 0368155 22 33730 -10.252 0341293
023 2117552 23 524299 G970 027581 FFT - Real Part:
024 066851 24 0925776 59012 0.198895
025 033152 25 3100077 4.991781 0185818 I $0$1:$041000 J
026 0394927 26 316232 0,028866 0.100006
027 0.143179 27 9481148 -3.10764 031515 i ’
[29] 028 2740805 28 5.448927 152843 0176961 FFT - Imaginary Part:
[30] 029 0230976 29 19532 113264 036361 I SE§14EF1000 J
[31] 03 o917 3 130865 382213 012798
031 0.17747 311148378 915371 009173
(33| 03 -157611 32 1154045 522124 0400554 Power Spectral Density:
033 1577908 33 313453 1.159207 0.108684 :
[35] 034 07303 3.4 1005112 0.107201 0031965 I $F§L$r$L000 J
[36] 035 1.408944 35 06975 0803781 003355
[37] 036 2153784 36 029716 -137448 0.434751
(3 03 07982 37 404486 547217 0216183
[39] 038 031603 38 564649 0.003747 0.184862 Cancel
039 080853 39 24379 6877807 0230764
0.4 0597445 4 1717283 1174817 008797
041 2119417 41 1218506 143198 0454469
042 001473 42 -0526% 1772755 0560842
0.43 2131939 43 270571 0383641 0086418
044 D5 4.4 1248446 1043094 0332209 ;
Dt Ditam s i i 0%) rgurero.t =lolx|
sheet { Shectz { heets |4 File

Readly

[isp=N= ==
Tirme domain signal
T
BT O P
ARt

Bl

3

2

Time
Power spectral density

I e S N B B B
1 AR O FUNUS U TRUE DU W
o 5 10 15 20 2 30 3/ 40 45 AD

Frequency (Hz)

Figure 4-21: Worksheet with Inputs and Outputs for Test Problem

The power spectral density reveals the two signals at 15 and 40 Hz.

4-33

4 Usage Examples

Package the Add-in

As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can now be installed
onto other computers that need to use the Spectral Analysis add-in.

To package the add-in, follow these steps.

1 Return to mx1tool. If mx1tool has been dismissed, start it again and reload
the Fourier project.

2 Select Component->Package Component.

This command creates the Fourier.exe self-extracting executable. To install
this add-in onto another computer, copy the Fourier.exe package to that
machine, run it from a command prompt, and follow the instructions.

4-34

Function Wizard

Introduction (p. 5-2) Describes the purpose and use of the Function Wizard.

5 Function Wizard

Introduction

The Function Wizard enables you to pass Microsoft Excel (Excel 2000 or
later) worksheet values to a compiled MATLAB model and to return
model output to a cell or range of cells in the worksheet. The Function
Wizard provides an intuitive interface to Excel worksheets. Knowledge
of Visual Basic for Applications (VBA) programming is not required.

The Function Wizard reflects any changes that you make in the
worksheets, such as range selections. Going in the opposite direction, you
can use the Function Wizard to control the placement and output of data
from MATLAB functions to the worksheets.

The Function Wizard does not currently support the MATLAB struct,
sparse, and complex data types.

Installing the Function Wizard Add-in

The Function Wizard GUI is contained in an Excel add-in
(mlfunction.xla) residing in the
<matlab>\toolbox\matlabxl\matlabxl directory. You must install this
add-in before using the Function Wizard.

Follow these steps to install the add-in:
1 Select Tools->Add-Ins from the Excel main menu.

2 If the Function Wizard was previously installed, a reference to
MATLAB Function Wizard appears in the list. Check the item and
click OK.

If the Function Wizard was not previously installed, click Browse and
proceed to the <matlab>\toolbox\matlabxl\matlabxl directory.
Select m1function.xla. Click OK on this dialog box and on the
preceding one.

The Function Wizard is also packaged with all deployed components.
When a component is installed onto a separate machine, the Function
Wizard is placed into the top-level directory of the installed component.
In this case sse the instructions above, substituting the installed
component’s directory.

Introduction

Starting the Function Wizard

To start the Function Wizard, click on Tools -> MATLAB Functions on
the Excel menu bar. The starting point of the Function Wizard, called the
Function Viewer, now displays.

5 Function Wizard

Function Viewer

MATLAB Functions |
www.murhworks.cor“
(he‘k to — WorkSheet Functions .
activate fctive | Function | D“P'“ys all
function. Clear——> mprncs currently
. olesky
to deactivate. I°“d:dh
. . worksheet
Deactivated Duplicate and
functions not optionally move
executed when function
Execute button Move selected
function ahead in
Add new : .
5 e Edt... Conv.. Move Up execution order.
function
Delete Renarme. .. Shift Cells. .. Move Down Move Seleded
7 function back in
Execute | Done | Help | execution order.
DeIIeI‘e d Rename Exit
selecte .
fonction selected Function Invoke help.
. function.

Edit current
function. Select

worksheet Move function to new
ranges for worksheet position.
inputs and

Execute all active
functions. Functions
executed in order
they appear in list.

The Function Viewer controls the execution of worksheet functions. Use
the Function Viewer to organize the list of all currently loaded MATLAB
Builder for Excel functions.

5-4

Introduction

Using the Function Viewer

The Function Viewer displays the names of all loaded functions. You can
edit this name to provide a more descriptive identifier. A check box for
each entry denotes the active/inactive state of each function. Inactive
functions are not executed when you click the Execute button.

Below the function list is a panel of eight buttons. To add a new
component to the list of loaded worksheet functions, click the New
button. (See “Component Browser” on page 5-6).

Each of the other buttons performs a specific action on the currently
selected function. To select a function, left-click the list item. The row
becomes highlighted. You can change the current selection by
left-clicking on a different list item or by using the up and down arrow
keys on your keyboard.

Loading and Executing Functions

To load and execute a Excel builder function in your worksheet requires
three steps:

1 Load an Excel builder component.

Click the New button on the Function Viewer to display the
Component Browser. (See “Component Browser” on page 5-6.) Use
this browser to select the component you want to load from the list of
all currently installed Excel builder components. From the selected
component, add the method that you want to call.

2 Set the inputs, outputs, and other properties of your function.

Click the Edit button to display the Function Properties dialog box.
(See “Function Properties” on page 5-7.)

3 Click the Execute button on the Function Viewer.

When you click the Execute button, functions execute in the order
displayed in the list.

5-5

5 Function Wizard

5-6

Component Browser

The Component Browser lists all Excel builder components currently
installed on the system. When you click the New button on the Function
Viewer, this dialog box displays.

Add selected
functions to list.

Functions to be

loaded
MATLAB Components ll
— Available Components — Current Selections
@ MATLAB Excel Builder Components = Function Mame |
randomwalk 1.0 myprimes
gk mycomponent 1.0
=S H myclass
; fFunction [x] = getdates(n, inc)
function [p] = myprimes{n} Add ->
function [v] = mysumivararging
function [y, warargout] = mysum2(x, vars & —ml
; function [varargout] = randvectors
- Funckion [v] = suritaln) -
% ymatriz 1.0
Fl-filh mvmnatriz 2.0 =
4| | B
OK I Cancel Help
Remove selected Loud selected Return to
functions from list. functions and Function
return to Viewer Invoke helj
Function without
Viewer. loading

The Component Browser lists each component by name and version.
Expanding a component reveals the class name at the next level. You can
also expand the class to reveal the MATLAB functions that make up the
class methods.

Select the desired method and click the Add button to add a function. To
load all methods of a class, select the class name and click Add. Added
functions appear under Current Selections on right of the browser. To
remove a function before returning to the Function Viewer, highlight it
under Current Selections and click the Remove button.

Introduction

Function Properties

This group of dialog boxes sets properties and values for the inputs and
outputs. You can map inputs and outputs to ranges in your worksheet.
You can also rename a function with any of these dialog boxes.

When you click the Edit button on the Function Viewer, the dialog box
below displays.

Editing Required Inputs

Function Properties i

— Edit function properties
Function synkax:

function [y, warargout] = mysumz(x, varargin) MA".AB
calling
Click to edit
ouinuis
utpuis.
Edit function name:|
| Type new
mysumz2 f N
Enable editing of o | s | unction name
. —= I Outputs
input arguments. to rename
— Select Input Ranges Yalues
' Required Arguments " warargin Arguments (|i(k to ed"
Input Arguments vqrurgi“
Argument | RangeValue | inputs, if
Select arguments % SAFLBASID puls,
from list for editing.
; Set argument
Add Delete | Properties... |

Done Help p=
_teb |

A

properties.

—— Invoke help.

Return to
Function

® The Add and Delete buttons become active when you select

varargin Arguments.
¢ Select the Outputs tab to switch to editing outputs.

5-7

5 Function Wizard

5-8

Editing Function Arguments. Function arguments may be either required
arguments or varargin/varargout arguments:

® Required arguments appear first on the left or right sides of a
MATLAB function and are not named varargin or varargout.

® varargin/varargout arguments always appear as the last input or
output. They allow you to specify a variable number of arguments.

To edit required arguments, select the argument in the list and click the
Properties button.

Before you can edit varargin/varargout arguments, you must first
explicitly add them using the Add button. If the MATLAB function does
not have varargin/varargout arguments, the ability to add arguments
to the list is disabled. Once you have added varargin/varargout
arguments, you can edit them in the same way as required arguments.

Introduction

Editing varargin Inputs

Function Properties ﬂ

— Edit function properties
Function synkax:

function [v, varargout] = mysumzZ(x, vararging

Click to edit

TS.
Edit function name:|

I mysumz2

Inputs | utputs |

— Select Input Ranges Yalues

- Reguired Arguments o) warargin Argurments
warargin
Argurnent | Rangealue |

warargin[1] $B+£1:4B410
wvarargin[2] $CS1:40%10

Set argument

Add Delete | Properties. .. |

properties.
kb |<— Invoke help.
Add new Delete Return to
varargin selected Function Viewer.
argument to varargin
list.

5 Function Wizard

5-10

Editing Required Outputs

Function Properties ll

— Edit function properties
Function syntax:

function [y, varargout] = mysum2(x, vararging

Edit Function name:

I mysumz2

(II(k to Ed" il1pll|$. 'S Inputs Sutputs

— Select Output Ranges
o Reguired Arguments e warargout Arguments c"‘k to ed“
Output Arguments varargout outputs,
Argument | Rangealue | if resent.
Select arguments v $A912 P
from list for editing.
| 4 Set output
Add Delete Properties.. < urgumenl

6 |<— Invoke help.

Return to
Function Viewer.

¢ The Add and Delete buttons become active when you select
varargout Arguments.

¢ Select the Inputs tab to switch to editing inputs.

Introduction

Editing varargout Outputs

Click to edit inputs.

Click to edit required
output arguments.

Function Properties

— Edit function properties

Function synkax:

function [v, varargout] = mysumzi(x, varargin)

Edit funiction narme:

I mysumz2

= Inputs ~ Cutputs

— Select Oukput Ranges
(o Reguired Arguments o warargouk Argurnents
warargouk
Argumenk | Rangetalue |
warargout[1] $BE12
varargout[2] C12
Add Delete | Properties. .. ! Se' OU'pllf
argument
b |4 Invoke
Add new Delete Return to
varargout selected Function
argument to varargout
list.

5-11

5 Function Wizard

Argument Properties

The Argument Properties and related dialog boxes allow you to select
worksheet ranges or optionally enter a specific value for an input
argument.

Input Argument Range

Argument Properties for x 4 ll
— Sek RangeYalue For Inpuk Argument Se' worksheet runge fOI'
* Range: ;| current argument.
I Ao recalculate on change Recalculate current function
Type: when any cell in the current
" Yalue: vtk [argument changes.
Cptions... [T
o |
[
Click here to set Save and return
single value for to_Function

current argument.

Input Conversion Options ll

Set Conversion Options Far x
Format Array As: Coerce Numeric to Type:

I Diefault - l

Inteqger .
Lang ring
Boolean

Bwte
Skring K | Cancel |

Date

5-12

Introduction

Input Argument Value

Argument Properties for x

— Sek RangeYalue For Inpuk Argument

" Range: |A1:A1D

I~ | Buto recalculate on change

Type:
10 Daouble

% Yalue: I I Single
i Integer

i Opkions.. Lang
Boolean

Bwte

HelP string

T Date

Save and return to

Enter value for
current
argument.

unction Viewer.

Input Conversion Options

Set Conversion Opkions For
Format Array As: Coerce Numeric to Type:

Dafalt pefaul -

single
ink3z2
uink3z

int16
Lint16 [8]4 | Cancel |

ints l

Output Argument Properties

Argument Properties for ¥ ll

Set Range/value For Output Argument

1 Select worksheet range.

' Range: =1
[¥ AutoResize | Transpose [Output As date Coerce output values to Excel
dates.
_ b K Invoke help.

|
Automatically resize Transpose Return to
output range to fit output Function

5-13

5 Function Wizard

5-14

Function Utilities

Rename Function
Use this dialog box to rename a function. When you click the Rename
button on the Function Viewer, this dialog box displays.

Rename Function ll
Set Function Marne
e Enter new name for
selected function.
conet |
A\

Save new name Return to

and return to Function

Function Viewer
without

Introduction

Copy Function

Use the Copy Function dialog box to make copies of the current
function. The Standard Copy tab creates a specified number of copies of
the function while copying any argument/range values you have set.

The Advanced tab creates a rectangular array of copies of the current
function in the current worksheet, and optionally copies the cell contents
of ranges referenced by the function’s arguments. When you set the
number of rows and columns and the row/column increments, the copy
process automatically updates cell references by the specified increment

amounts.

Copy Function
Set size and positioning
of copies.

Standard | advanced

Create copies of function

Mumber of Copies: I 1 ﬂ —
P Copy Function b Xl

Standard ~ Advanced I

Create an array of copies and update cell references

Mumber of Rows:l 2 i’ Mumber of Columns: I 2 II
| = ER—
Cancel Row increment: + | Column increment: =

[V Copy cell contents
Enier “"mber Total number of copies including original: 4

of copies.
(o] 4 I Cancell Help |

Make copies Return to

and return to Function

Function Viewer
without

® Positive increments move rows down and columns to the right.

® Negative increments move rows up and columns to the left.

5-15

5 Function Wizard

5-16

Move

Use the Move Function dialog box to move the currently selected
function to a new position in the current worksheet. When you set the
row and column increments, the move process automatically updates cell
references by these values. You can also optionally move the cell contents
of any ranges referenced by the function.

x

Move the location of the current Funckion

a I jra]
Row increment: I 2 j Column increment: 2 ﬁ

[V Move cell contents

[0]'4 I Cancell Help |

Move contents Movefunction Return to

of all and return to Function
worksheet Function Viewer
cells without

referenced by
any argument

¢ Positive increments move rows down and columns to the right.

¢ Negative increments move rows up and columns to the left.

Function Reference

Functions — Alphabetical List (p. 6-2) Functions listed alphabetically

6-2

Functions — Alphabetical List

This section contains function reference pages listed alphabetically.

componentinfo

Purpose
Syntax

Arguments

Description

Examples

Query system registry
Info = componentinfo(ComponentName, MajorRevision, MinorRevision)

ComponentName (Optional) A MATLAB string providing the name of a
Excel builder component. Names are case sensitive. If
this argument is not supplied, the function returns
information on all installed components.

MajorRevision (Optional) Component major revision number. If this
argument is not supplied, the function returns
information on all major revisions.

MinorRevision (Optional) Component minor revision number.
Default = 0.

Info = componentinfo(ComponentName, MajorRevision, MinorRevision)
returns registry and type information for a Excel builder component.
componentinfo takes between zero and three inputs and returns an array of
structures representing all the registry and type information needed to load
and use the component.

When you supply a component name, MajorRevision and MinorRevision are
interpreted as shown below.

Value of Information Returned
MajorRevision

>0 Information on a specific major and minor revision
0 Information on the most recent revision
<0 Information on all versions

If you do not supply a component name, the function returns information for
all components installed on the system.

Example 1.

Info = componentinfo('mycomponent',1,0)

6-3

componentinfo

6-4

With a component name and major revision supplied, the function returns
information for revision 1.0 of mycomponent.

Example 2.

Info = componentinfo('mycomponent')

With a component name but no major revision supplied, the function returns
information for all revisions of mycomponent.

Example 3.

Info = componentinfo

Without any arguments supplied, the function returns information for all
installed components.

mxltool

Purpose Graphical user interface for MATLAB Builder for Excel
Syntax mx1tool
Description mx1tool displays the MATLAB Builder window, which is the graphical user

interface (GUI) for MATLAB Builder for Excel.

«): MATLAB Builder

File Project Build Component Help
rProject File rBuild Statu

Al Eile |

Froject Files

Edit Femove & ear:

mxltool

6-6

Producing a COM Object
from MATLAB

Capabilities (p. A-2) Steps to create and deploy a COM object.

Calling Conventions (p. A-7) Calling conventions and M-file mappings.

A Producing @ COM Object from MATLAB

Capabilities

MATLAB Builder for Excel enables you to pass Microsoft Excel worksheet
values to a compiled MATLAB model via Visual Basic for Applications (VBA)
and to return model output to a cell or range of cells in the worksheet. Each
Excel builder component is built as a stand-alone COM object. (COM is an
acronym for Component Object Model, Microsoft’s binary standard for object
interoperability. COM is the widely accepted standard for integration of
external functionality into Microsoft Office applications, such as Excel.) Each
MATLAB function included in a given component appears as a method of the
created COM class. The resulting call syntax from Visual Basic is
systematically mapped to the syntax of the original MATLAB. This mapping
provides an intuitive bridge from MATLAB, where the functions are created,
to Visual Basic, where the functions are ultimately called.

Excel builder provides robust data conversion and array formatting to preserve
the flexibility of MATLAB when calling from Visual Basic. Also provided is
custom error processing so that errors originating from MATLAB functions are
automatically manifested as Visual Basic exceptions. The information
returned with the error always references the original MATLAB code, making
debugging easy.

A simple versioning mechanism is also built into each component to help
manage deployment of multiple versions of the same component. Figure A-1,
Creating a Stand-Alone COM Object with the MATLAB Compiler, on page A-3
provides an overview of the process of creating a stand-alone COM object from
compiled MATLAB M-files.

Capabilities

M-files mycomponent_1_0.d|

foo.m

Imyclass ©o——

MATLAB

har.m Compiler

IDispatch o—

myclass
object

O_
ISupportErrorinf

User-supplied Information:
Class name: myclass
Component name:
mycomponent

Version number: 1.0

Figure A-1: Creating a Stand-Alone COM Object with the MATLAB Compiler

The process of creating a Excel builder component is completely automatic. The
user supplies a list of M-files to process and a some additional information, i.e.,
the component name, the class name, and the version number. The build
process that follows involves code generation, compiling, linking, and
registration of the finished component.

Figure A-2, M-Build Steps and Intermediate Files Created, on page A-4 shows
the files created at each step in the entire process, from compilation to
registration of the final DLL.

Note If you are reading this document online, click on Steps 1 - 5 in the
figure for an explanation of what takes place at each specific point in the
process.

A Producing @ COM Object from MATLAB

(ST MATLAB M-files
MATLAB Compiler
[mcc -B cexel:mycomponent,myclass, 1.0 too.m har.m
v]]
Step 1. Code =
. ycomponent_com.hpp, s
Generation mycomponent_com.cpp mycomponent_idL.idl mycomponent.ctf
mycomponent_dIl.cpp | mycomponent.def mycomponent.rc

Step 2. Create IDL Compiler
Interface
Definitions v \1/

mycomponent_idl.h, -

ol o mycomponent_idl.tlb

mycomponent_idl_i.c
Step 3. C++] L
Compilation C++ Compiler mccomciass.h

Step 4. Linking
and Resource
Binding

Step 5. Component
Registration

v

Object Files

Linker MATLAB Libraries

mycomponent_1_0.dll
(no type info)

lResource Compiler

mycomponent_1_0.dll
(includes type info)

Figure A-2: M-Build Steps and Intermediate Files Created

Capabilities

Step 1. Code Generation

The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main source
file (mycomponent_d11l.cpp) containing the implementation of each exported
function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (mycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source files, the
compiler generates a DLL exports file (mycomponent.def), a resource script
(mycomponent.rc), and a Component Technology File (mycomponent.ctf). See
the heading “Overview of the MATLAB Compiler Technology” in the MATLAB
Compiler documentation for a discussion of ctf files.

Step 2. Create Interface Definitions

The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent _idl.idl), creating the interface header file
(mycomponent_idl.h), the interface GUID file (mycomponent_idl i.c), and the
component type library file (mycomponent_idl.t1b). The interface header file
contains type definitions and function declarations based on the interface
definition in the IDL file. The interface GUID file contains the definitions of the
GUIDs from all interfaces in the IDL file. The component type library file
contains a binary representation of all types and objects exposed by the
component.

Step 3. C++ Compilation

The third step compiles all C/C++ source files generated in steps 1 and 2 into
object code. One additional file containing a set of C++ template classes
(mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Step 4. Linking and Resource Binding

The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_1_0.d11). The

A Producing @ COM Object from MATLAB

resource compiler is then invoked on the DLL, along with the resource script
generated in step 1, to bind the type library file generated in step 2 into the
completed DLL.

Step 5. Component Registration

The final build step registers the DLL on the system. See “Component
Registration” on page C3 for information about this process.

Calling Conventions

Calling Conventions

This section describes the calling conventions for Excel builder components,
including mappings from the original M-functions to Visual Basic. A function
call originating from an Excel worksheet is routed from a Visual Basic function
into a compiled M-function, as shown in Figure A-3.

[

Excel Application

N

foo(yl,y2,x1,x2)

sub

Visuval Basic function/subroutine

0—
0—
——
o—yp Ceai
COM Class.method

N

function [yl,y2] =

Compiled M-function

Figure A-3: Function Call Routing

A Producing @ COM Object from MATLAB

Producing a COM Class

Producing a COM class requires the generation of a class definition file in
Interface Description Language (IDL) as well as the associated C++ class
definition/implementation files. (See the Microsoft COM documentation for a
complete discussion of IDL and C++ coding rules for building COM objects.)
The builder automatically produces the necessary IDL and C/C++ code to build
each COM class in the component. This process is generally transparent to the
user.

As a final step, the builder produces a Visual Basic function wrapper for each
method, used to implement an Excel formula function. Formula functions are
useful when calling a method that returns a single scalar value with one or
more inputs. Use a general Visual Basic subroutine when calling a method that
returns array data or multiple outputs.

IDL Mapping
The most generic MATLAB M-function is

function [Y1, Y2, , varargout] = foo(X1, X2, , varargin)

This function maps directly to the following IDL signature.

HRESULT foo([in] long nargout,
[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,

[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,

[in] VARIANT varargin);

This IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.
(nargout is not produced if you compile an M-function containing no outputs.)
When present, the nargout parameter is an [in] parameter of type long. It is
always the first argument in the list. This parameter allows correct passage of
the MATLAB nargout parameter to the compiled M-code. Following the

Calling Conventions

nargout parameter, the outputs are listed in the order they appear on the left
side of the MATLAB function, and are tagged as [in,out], meaning that they
are passed in both directions. The function inputs are listed next, appearing in
the same order as they do on the right side of the original function. All inputs
are tagged as [in] parameters. When present, the optional
varargin/varargout parameters are always listed as the last input parameters
and the last output parameters. All parameters other than nargout are passed
as COM VARIANT types. “Data Conversion Rules” on page B2 lists the rules for
conversion between MATLAB arrays and COM VARIANTS.

Visual Basic Mapping

The Visual Basic mapping to the IDL signature shown above is

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _

varargout As Variant, _
X1 As Variant, _
X2 As Varaint, _

varargin As Variant)

(See the COM documentation for mappings to other languages, such as C++.)
Visual Basic provides native support for COM VARIANTs with the Variant type,
as well as implicit conversions for all Visual Basic basic types to and from
Variants. In general, arrays/scalars of any Visual Basic basic type, as well as
arrays/scalars of Variant types, can be passed as arguments. Excel builder
components also provide direct support for the Excel Range object, used by
Visual Basic for Applications to represent a range of cells in an Excel
worksheet. See the Visual Basic for Applications documentation included with
Microsoft Excel for more information on Visual Basic data types and Excel
Range manipulation.

A Producing @ COM Object from MATLAB

A-10

MATLAB Compiler Output

The Excel builder generates a default Visual Basic function wrapper for each
class method with the following format:

Function foo(Optional X1 As Variant, _
Optional X2 As Variant, _

Optional varargini As Variant, _
Optional varargin2 As Variant, _

Optional vararginN As Variant) _
As Variant
Dim Y1, Y2, ..., varargout As Variant
Dim varargin As Variant

(other declarations)
(function body)
foo = Y1

(error handling code)

End Function

By default, the generated formula function contains an argument list with all
the inputs to the method call and a return value corresponding to the first
output parameter. The argument list includes each explicit input parameter. If
the optional varargin parameter is present in the original MATLAB function,
additional arguments varargini, varargin2,...,vararginn are generated,
where n is a number chosen by the builder. The number n is chosen so that the
total number of inputs is less than or equal to 32. This function generally
includes a declaration for each output parameter as type Variant. If the
original MATLAB function contains a varargin, a variable is declared of type

Calling Conventions

Variant to pass collectively the varargini,...,vararginn parameters in the
form of a Variant array. The main function body contains code for

® Packing varargin parameters if available

¢ Creating the necessary class instance

¢ Calling the target method

¢ Error handling

A-11

A Producing @ COM Object from MATLAB

A-12

Data Conversion

Data Conversion Rules (p. B-2) Converting between MATLAB and COM variants.

B Data Conversion

Data Conversion Rules

This section describes the data conversion rules for MATLAB Builder for Excel
components. Excel Builder components are dual interface COM objects that
support COM Automation compatible data types. When a method is invoked on
a Excel Builder component, the input parameters are converted to MATLAB
internal array format and passed to the compiled MATLAB function. When the
function exits, the output parameters are converted from MATLAB internal
array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values. The Win32
Application Program Interface (API) provides many functions for creating and
manipulating VARIANTs in C/C++, and Visual Basic provides native language
support for this type. See the Visual Studio documentation for definitions and
API support for COM VARIANTs. VARIANT variables are self describing and store
their type code as an internal field of the structure.

Table B-1 lists the VARIANT type codes supported by Excel Builder components.
Table B-2, MATLAB to COM VARIANT Conversion Rules, on page B-5 and
Table B-3, COM VARIANT to MATLAB Conversion Rules, on page B-10 list
the data conversion rules between COM VARIANTs and MATLAB arrays.

Table B-1: VARIANT Type Codes Supported

VARIANT Type Code C/C++ Type Variant Visual Definition
(C/C++) Type Code Basic
(Visual Type
Basic)
VT_EMPTY - VbEmpty - Uninitialized VARIANT
VT_I1 char - - Signed one-byte
character
VT_UIA unsigned char vbByte Byte Unsigned one-byte
character
VT_I2 short vbInteger Integer Signed two-byte integer

Data Conversion Rules

Table B-1: VARIANT Type Codes Supported (Continued)

VARIANT Type Code C/C++ Type Variant Visual Definition
(C/C++) Type Code Basic

(Visual Type

Basic)

VT_UI2 unsigned short - - Unsigned two-byte
integer

VT _I4 long vbLong Long Signed four-byte integer

VT _UI4 unsigned long - - Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY cy*t vbCurrency Currency Currency value (64-bit
integer, scaled by
10,000)

VT_BSTR BSTR* vbString String String value

VT_ERROR SCODE* vbError - A HRESULT (Signed
four-byte integer
representing a COM
error code)

VT_DATE DATE™* vbDate Date Eight-byte floating point
value representing date
and time

VT_INT int - - Signed integer;
equivalent to type int

VT_UINT unsigned int - - Unsigned integer;

equivalent to type
unsigned int

B-3

B Data Conversion

B-4

Table B-1: VARIANT Type Codes Supported (Continued)

VARIANT Type Code C/C++ Type Variant Visual Definition
(C/C++) Type Code Basic
(Visual Type
Basic)
VT_DECIMAL DECIMAL™* vbDecimal - 96-bit (12-byte)
unsigned integer, scaled
by a variable power of 10
VT_BOOL VARIANT_BOOL* vbBoolean Boolean Two-byte Boolean value
(0xFFFF = True; 0x0000
= False)
VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer to
an object
VT_VARIANT VARIANT* vbVariant Variant VARIANT (can only be

<anything>|VT_ARRAY

<anything>|VT_BYREF

specified if combined
with VT_BYREF or
VT_ARRAY)

Bitwise combine
VT_ARRAY with any basic
type to declare as an
array

Bitwise combine
VT_BYREF with any basic
type to declare as a
reference to a value

* Denotes Windows-specific type. Not part of standard C/C++.

Data Conversion Rules

Table B-2: MATLAB to COM VARIANT Conversion Rules

MATLAB Data Type

VARIANT type for Scalar

Data

VARIANT type for
Array Data

Comments

cell

structure

A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

VT_DISPATCH

A multidimensional
cell array converts to a
VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of each
array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

VT_DISPATCH

A MATLAB struct
array is converted
to an MWStruct
object. (See“Class
MWStruct” on
page D-16.) This
object is passed as a
VT_DISPATCH type.

B-5

B Data Conversion

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type

VARIANT type for Scalar

Data

VARIANT type for
Array Data

Comments

char

sparse

A 1-by-1 char matrix

converts to a VARIANT of
type VT_BSTR with string

length = 1.

VT_DISPAATCH

A 1-by-L char matrix
is assumed to
represent a string of
length Lin MATLAB.
This case converts to a
VARIANT of type
VT_BSTR with a string
length = L. char
matrices of more than
one row, or of a higher
dimensionality
convert to a VARIANT of
type
VT_BSTR|VT_ARRAY.
Each string in the
converted array is of
length 1 and
corresponds to each
character in the
original matrix.

VT_DISPATCH

Arrays of strings
are not supported
as char matrices.
To pass an array of
strings, use a cell
array of 1-by-L
char matrices.

A MATLAB sparse
array is converted
to an MWSparse
object. (See “Class
MWSparse” on
page D-25.) This
object is passed as a
VT_DISPATCH type.

B-6

Data Conversion Rules

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar VARIANT type for Comments
Data Array Data
double A real 1-by-1 double A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT_R8. A double matrix compiled
complex 1-by-1 double converts to a VARIANT M-functions using
matrix converts to a of type the MWComplex
VARIANT of type VT_R8|VT_ARRAY. A class. See “Class
VT_DISPATCH. complex MWComplex” on
multidimensional page D-23.)
double matrix
converts to a VARIANT
of type VT_DISPATCH.
single A real 1-by-1 single A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT_R4. A single matrix converts = compiled
complex 1-by-1 single to a VARIANT of type M-functions using
matrix converts to a VT_R4|VT_ARRAY. A the MWComplex
VARIANT of type complex class. See “Class
VT_DISPATCH. multidimensional MWComplex” on
single matrix converts page D-23.)
to a VARIANT of type
VT_DISPATCH.
int8 Areal 1-by-1 int8 matrix A real Complex arrays are
converts to a VARIANT of multidimensional passed to and from

type VT_I1. A complex
1-by-1 int8 matrix
converts to a VARIANT of
type VT_DISPATCH.

int8 matrix converts
to a VARIANT of type
VT_I1|VT_ARRAY. A
complex
multidimensional
int8 matrix converts
to a VARIANT of type
VT_DISPATCH.

compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-23.)

B-7

B Data Conversion

B-8

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type VARIANT type for Scalar VARIANT type for Comments
Data Array Data
uint8 A real 1-by-1 uint8 A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT _UI1. uint8 matrix converts compiled
A complex 1-by-1 uint8 to a VARIANT of type M-functions using
matrix converts to a VT_UI1|VT_ARRAY.A the MWComplex
VARIANT of type complex class. See “Class
VT_DISPATCH. multidimensional MWComplex” on
uint8 matrix converts page D-23.)
to a VARIANT of type
VT_DISPATCH.
int16 A real 1-by-1 int16 A real Complex arrays are
matrix converts to a multidimensional passed to and from
VARIANT of type VT_I2. A int16 matrix converts compiled
complex 1-by-1 int16 to a VARIANT of type M-functions using
matrix converts to a VT_I2|VT_ARRAY. A the MWComplex
VARIANT of type complex class. See “Class
VT_DISPATCH. multidimensional MWComplex” on
int16 matrix converts page D-23.)
to a VARIANT of type
VT_DISPATCH.
uint16 A real 1-by-1 uint16 A real Complex arrays are
matrix converts to a multidimensional passed to and from

VARIANT of type VT_UI2.
A complex 1-by-1 uint16
matrix converts to a
VARIANT of type
VT_DISPATCH.

uint16 matrix
converts to a VARIANT
of type
VT_UI2|VT_ARRAY. A
complex
multidimensional
uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-23.)

Data Conversion Rules

Table B-2: MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data Type

VARIANT type for Scalar
Data

VARIANT type for
Array Data

Comments

int32

uint32

Function handle
Java class
User class

logical

A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT of
type VT_DISPATCH.

A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT of
type VT_DISPATCH.

VT_EMPTY
VT_EMPTY
VT_EMPTY

VT_Bool

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY. A
complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

A multidimensional
uint32 matrix
converts to a VARIANT
of type
VT_UI4|VT_ARRAY. A
complex
multidimensional
uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

VT_EMPTY
VT_EMPTY
VT_EMPTY

VT_Bool|VT_ARRAY

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-23.)

Complex arrays are
passed to and from
compiled
M-functions using
the MWComplex
class. See “Class
MWComplex” on
page D-23.)

Not supported
Not supported
Not supported

B-9

B Data Conversion

Table B-3: COM VARIANT to MATLAB Conversion Rules

VARIANT Type MATLAB Data Comments
Type (scalar or
array data)
VT_EMPTY N/A Empty array created.
VT_I1 ints
VT_UI1 uint8
VT_I2 int16
VT _UI2 uint16
VT 14 int32
VT_UI4 uint32
VT_R4 single
VT_RS8 double
VT_CY double
VT_BSTR char A VARIANT of type VT_BSTR converts to a 1-by-L
MATLAB char array, where L = the length of the
string to be converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to a MATLAB cell
array of 1-by-L char arrays.
VT_ERROR int32

B-10

Data Conversion Rules

Table B-3: COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type MATLAB Data Comments
Type (scalar or
array data)
VT_DATE double 1. VARIANT dates are stored as doubles starting at
midnight Dec. 31, 1899. MATLAB dates are
stored as doubles starting at 0/0/00 00:00:00.
Therefore, a VARIANT date of 0.0 maps to a
MATLAB numeric date of 693960.0. VARIANT
dates are converted to MATLAB double types and
incremented by 693960.0.
2. VARIANT dates can be optionally converted to
strings. See “Data Conversion Flags” on
page B-14 for more information on type coercion.
VT_INT int32
VT_UINT unit32
VT_DECIMAL double
VT_BOOL logical
VT_DISPATCH (varies) IDispatch* pointers are treated within the

context of what they point to. Objects must be
supported types with known data extraction and
conversion rules or expose a generic “Value”
property that points to a single VARIANT type.
Data extracted from an object is converted based
upon the rules for the particular VARIANT
obtained. Currently, support exists for Excel
Range objects as well as Excel Builder types
MWStruct, MWComplex, MWSparse, and MWArg. See
“Utility Library Classes” on page D-3 for
information on Excel Builder types.

B-11

B Data Conversion

Table B-3: COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type MATLAB Data Comments
Type (scalar or
array data)

<anything>|VT_BYREF (varies) Pointers to any of the basic types are processed
according to the rules for what they point to. The
resulting MATLAB array contains a deep copy of
the values.

<anything>|VT_ARRAY (varies) Multidimensional VARIANT arrays convert to
multidimensional MATLAB arrays, each element
converted according to the rules for the basic
types. Multidimensional VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert to
multidimensional cell arrays, each cell converted
according to the rules for that specific type.

Array Formatting Flags

Excel builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed in
Table B-2 and Table B-3. In some cases this is not possible, e.g., when existing
MATLAB code is used in conjunction with a third-party product like Excel.

B-12

Data Conversion Rules

Table B-4 shows the array formatting flags.

Table B-4: Array Formatting Flags

Flag

Description

InputArrayFormat

InputArrayIndFlag

OutputArrayFormat

OutputArrayIndFlag

Defines the array formatting rule used on input arrays. An input array
is a VARIANT array, created by the client, sent as an input parameter to
a method call on a compiled COM object. Valid values for this flag are
mwArrayFormatAsIs, mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays as matrices. When
the input VARIANT is of type VT_ARRAY | <type>, where <type> is any
numeric type, this flag has no effect. When the input VARIANT is of type
VT_VARIANT |VT_ARRAY, VARIANTs in the array are examined. If they are
single-valued and homogeneous in type, a MATLAB matrix of the
appropriate type is produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB cell arrays.

Sets the input array indirection level used with the InputArrayFormat
flag (applicable only to nested arrays, i.e., VARIANT arrays of VARIANTS,
which themselves are arrays). The default value for this flag is zero,
which applies the InputArrayFormat flag to the outermost array. When
this flag is greater than zero, e.g., equal to N, the formatting rule
attempts to apply itself to the Nth level of nesting.

Defines the array formatting rule used on output arrays. An output
array is a MATLAB array, created by the compiled COM object, sent as
an output parameter from a method call to the client. The values for
this flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the corresponding
InputArrayFormat flag values.

(Applies to nested cell arrays only.) Output array indirection level used
with the OutputArrayFormat flag. This flag works exactly like
InputArrayIndFlag.

B-13

B Data Conversion

Table B-4: Array Formaiting Flags (Continued)

Flag Description

AutoResizeOutput (Applies to Excel ranges only.) When the target output from a method
call is a range of cells in an Excel worksheet and the output array size
and shape is not known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments. Useful when

calling an Excel Builder component from Excel where the MATLAB
function returns outputs as row vectors, and you want the data in
columns.

B-14

Data Conversion Flags

Excel builder components contain flags to control the conversion of certain
VARIANT types to MATLAB types.

CoerceNumericToType

This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type. VARIANT type codes affected by this flag are VT_I1,
VT_UI1, VT _I2, VT _UI2, VT _I4, VT _UI4, VT R4, VT_R8, VT_CY, VT DECIMAL,
VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this flag
are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypelLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32. The default for this flag, mvTypeDefault,
converts numeric data according to the rules listed in Table B-3.

InputDateFormat

This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according to the rule
listed in Table B-3. mwDateFormatString converts a VARIANT date to its string
representation. This flag only affects VARIANT type code VT _DATE.

OutputAsDate As Boolean

This flag instructs the data converter to process an output argument as a date.
By default, numeric dates that are output parameters from compiled MATLAB
functions are passed as Doubles that need to be decremented by the COM date

Data Conversion Rules

bias (693960) as well as coerced to COM dates. Set this flag to True to convert
all output values of type Double.

DateBias As Long

This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents the
difference between the COM Date type and MATLAB numeric dates. This flag
allows existing MATLAB code that already performs the increment of numeric
dates by 693960 to be used unchanged with Excel Builder components. To
process dates with such code, set this property to 0.

B-15

B Data Conversion

B-16

Registration and

Versioning

Component Registration (p. C-2)

Versioning (p. C-4)

Obtaining Registry Information
(p. C-5)

Adding or removing a component to or from the system
registry.

Control over building and deploying multiple versions of
a component.

Querying the registry.

C Registration and Versioning

C-2

Component Registration

When the MATLAB Builder for Excel creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this file
is bound with the resulting DLL as a resource.

Self-Registering Components

Excel builder components are all self-registering. A self-registering component
contains all the necessary code to add or remove a full description of itself to or
from the system registry. The mwregsvr utility registers self-registering DLLs.
For example, to register a component called mycomponent_1_0.d11, issue this
command at the DOS command prompt.

mwregsvr mycomponent_ 1 _0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

An Excel builder component installed onto a particular machine must be
registered with mwregsvr. If you move a component into a different directory
on the same machine, you must repeat the registration process. When deleting
a component from a specific machine, first unregister it to ensure that the
registry does not retain erroneous information.

Globally Unique Identifiers

Information is stored in the registry as keys with one or more associated named
values. The keys themselves have values of primarily two types: readable
strings and GUIDs. GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique. The MATLAB Compiler
automatically generates GUIDs for COM classes, interfaces, and type libraries
that are defined within a component at build time, and codes these keys into
the component’s self-registration code. The interface to the system registry is
directory based, and COM-related information is stored under a top-level key
called HKEY CLASSES ROOT. Under HKEY CLASSES ROOT are several other keys
under which the component writes its information. These keys are defined in
Table C-1.

Component Registration

Table C-1: Keys

Key

Definition

HKEY_CLASSES_ROOT\CLSID

HKEY_CLASSES ROOT\Interface

HKEY_CLASSES_ROOT\TypelLib

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

Information about COM classes on the system. Each
component creates a new key under
HKEY_CLASSES_ROOT\CLSID for each of its COM classes.
The key created has a value of the GUID that has been
assigned the class and contains several subkeys with
information about the class.

Information about COM interfaces on the system. Each
component creates a new key under
HKEY_CLASSES_ROOT\Interface for each interface it
defines. This key has the value of the GUID assigned to
the interface and contains subkeys with information
about the interface.

Information about type libraries on the system. Each
component creates a key for its type library with the
value of the GUID assigned to it. Under this key a new
key is created for each version of the type library.
Therefore, new versions of type libraries with the same
name reuse the original GUID but create a new subkey
for the new version.

These two keys are created for the component’s
Program ID and Version Independent Program ID.
These keys are constructed from strings of the form
<component-name>.<class-name> and
<component-name>.<class-name><version-number>.
These keys are useful for creating a class instance from
the component and class names instead of the GUIDs.

C-3

C Registration and Versioning

C-4

Versioning

Excel builder components support a simple versioning mechanism designed to
make building and deploying multiple versions of the same component easy to
implement. The version number of a component appears as part of the DLL
name, as well as part of the version-dependent ID in the system registry.

When a component is created, you can specify a version number (default = 1.0).
During the development of a specific version of a component, the version
number should be kept constant. When this is done, the MATLAB Compiler, in
certain cases, reuses type library, class, and interface GUIDs for each
subsequent build of the component. This avoids the creation of an excessive
number of registry keys for the same component during multiple builds, as
occurs if new GUIDs are generated for each build.

When a new version number is introduced, the MATLAB Compiler generates
new class and interface GUIDs so that the system recognizes them as distinct
from previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made to
the component. This ensures that after you deploy the new component, it is
easy to manage the two versions.

The MATLAB Compiler implements the versioning rules for a specific
component name, class name, and version number by querying the system
registry for an existing component with the same name.

¢ [fan existing component has the same version, the compiler uses the GUID
of the existing component’s type library. If the name of the new class matches
the previous version, it reuses the class and interface GUIDs. If the class
names do not match, it generates new GUIDs for the new class and interface.

¢ Ifthe compiler finds an existing component with a different version, it uses
the existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

e If the compiler does not find an existing component of the specified name, it
generates new GUIDs for the component’s type library, class, and interface.

Obtaining Registry Information

Obtaining Registry Information

Excel builder includes the MATLAB function componentinfo to query the
system registry for any installed Excel builder components. The function can
be executed inside MATLAB with the component name, major version number,
and minor version number as arguments. It returns an array of structures with
the requested information. Calling componentinfo with no arguments returns
all Excel builder components installed on the machine.

The next example queries the registry for a component named mycomponent
and a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes, two properties: m and n, and one event: myevent.

Note Although properties and events may appear in componentinfo output
fields, Excel builder components currently do not support them.

Info = componentinfo('mycomponent', 1, 0)

Info

Name: 'mycomponent'’
TypeLib: 'mycomponent 1.0 Type Library'
LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}"'

MajorRev: 1
MinorRev: O
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.d11'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces
ans =

Name: 'Imyclass’
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}"

C-5

C Registration and Versioning

Info.CoClasses
ans =
Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}"'
ProgID: 'mycomponent.myclass.i O
VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent 1 0.d11l'
Methods: [1x4 struct]
Properties: {'m', 'n'}
Events: [1x1 struct]
Info.CoClasses.Events.M
ans =
function myevent(x, y)
Info.CoClasses.Methods
ans =
1x4 struct array with fields:
IDL
M
C
VB
Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

C-6

Obtaining Registry Information

ans =
function [varargout] = randvectors()

ans =

function [x] getdates(n, inc)
ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component. These fields
are defined in Table C-2.

Table C-2: Registry Information Returned by componentinfo

Field Description

Name Component name

TypelLib Component type library

LIBID Component type library GUID

MajorRev Major version number

MinorRev Minor version number

FileName Type library filename and path. Since all Excel builder

components have the type library bound into the DLL,
this filename is the same as the DLL name and path.

C-7

C Registration and Versioning

Table C-2: Registry Information Returned by componentinfo (Continued)

Field Description

Interfaces An array of structures defining all interface definitions
in the type library. Each structure contains two fields:

® Name - Interface name

® TID - Interface GUID

C-8

Obtaining Registry Information

Table C-2: Registry Information Returned by componentinfo (Continued)

Field Description

CoClasses An array of structures defining all COM classes in the
component. Each structure contains these fields:

® Name - Class name

® CLSID - GUID of the class

® ProgID - Version dependent program ID

¢ VerIndProgID - Version independent program ID

® InprocServer32 - Full name and path to component
DLL

® Methods - A structure containing function prototypes
of all class methods defined for this interface. This
structure contains four fields:

= IDL - An array of Interface Description Language
function prototypes
= M- An array of MATLAB function prototypes
= C - An array of C-language function prototypes
= VB - An array of Visual Basic function prototypes
® Properties - A cell array containing the names of all
class properties.

® Events - A structure containing function prototypes
of all events defined for this class. This structure
contains four fields:

= IDL - An array of IDL (Interface Description
Language) function prototypes.

= M- An array of MATLAB function prototypes.

= C - An array of C-Language function prototypes.

= VB - An array of Visual Basic function prototypes

C-9

C Registration and Versioning

C-10

Utility Library

Utility Library Classes (p. D-3) Describes the classes provided in the Utility Library.

Enumerations (p. D-30) Describes the three provided sets of constants.

D Utility Library

This section describes the MWComUtil library provided with the MATLAB
Builder for Excel. This library is freely distributable and includes several
functions used in array processing, as well as type definitions used in data
conversion. This library is contained in the file mwcomutil.d11. It must be
registered once on each machine that uses Excel builder components.

Register the MWComUtil library at the DOS command prompt with the
command

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes” on
page D-3) and three enumerated types (see “Enumerations” on page D-30).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Visual Basic IDE. To do this select Tools->References...
from the main menu of the Visual Basic editor. The References dialog box
appears with a scrollable list of available type libraries. From this list select
MWComUtil 1.0 Type Library and click OK.

Utility Library Classes

Utility Library Classes

The Excel builder Utility Library provides several classes:

¢ “Class MWUtil” on page D-3

¢ “Class MWFlags” on page D-9

® “Class MWStruct” on page D-16

® “Class MWField” on page D-22

¢ “Class MWComplex” on page D-23
® “Class MWSparse” on page D-25

¢ “Class MWArg” on page D-28

Class MWUHiil

The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Excel). It is
most efficient to declare one variable of this type in global scope within each
module that uses it. The methods of MWUtil are

® “Sub MWInitApplication(pApp As Object)” on page D-3

® “Sub MWPack(pVarArg, [Var0], [Varl], ... ,[Var31])” on page D-4

¢ “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVarll, ..., [pVar31])” on page D-6

¢ “Sub MWDate2VariantDate(pVar)” on page D-8

The function prototypes use Visual Basic syntax.

Sub MWiInitApplication(pApp As Obiject)

Initializes the library with the current instance of Excel.

Parameters.
Argument Type Description
pApp Object A valid reference to the current Excel application

D Utility Library

D-4

Return Value. None.

Remarks. This function must be called once for each session of Excel that uses
Excel builder components. An error is generated if a method call is made to a
member class of any Excel builder component, and the library has not been
initialized.

Example. This Visual Basic sample initializes the MWComUtil library with the
current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument of
Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then
On Error GoTo Handle_ Error
If MCLUtil Is Nothing Then
Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub
Handle_Error:
bModuleInitialized = False
End If
End Sub

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])

Packs a variable length list of Variant arguments into a single Variant array.
This function is typically used for creating a varargin cell from a list of
separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted by
a Variant type of vbError with a value of &H80020004.)

Utility Library Classes

Parameters.
Argument Type Description
pVvarArg Variant Receives the resulting array
[var0], [Vari], Variant Optional list of Variants to pack into
the array. From 0 to 32 arguments can
be passed.

Return Value. None.

Remarks. This function always frees the contents of pvarArg before processing
the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows up
to 10 inputs, and returns the result y. If an error occurs, the function returns
the error string. This function assumes that MWInitApplication has been
previously called.

Function mysum(Optional VO As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant

Dim varargin As Variant

D-5

D Utility Library

D-6

Dim aClass As Object
Dim autil As Object

On Error Goto Handle Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call auUtil.MWPack(varargin,Vvo,V1,Vv2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum =y
Exit Function
Handle Error:
mysum = Err.Description
End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
Falsel, [pVar0], [pVarl], ..., [pVar31])

Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.
Argument Type Description
varArg Variant Input array of Variants to be
processed
nStartAt Long Optional starting index

(zero-based) in the array to
begin processing. Default = 0.

Utility Library Classes

Argument Type Description

bAutoResize Boolean Optional auto-resize flag. If this
flag is True, any Excel range
output arguments are resized to
fit the dimensions of the
variant to be copied. The
resizing process is applied
relative to the upper left corner
of the supplied range. Default =
False.

[pvar0], [pVari], ... Variant Optional list of Variants to
receive the array items
contained in VarArg. From 0 to
32 arguments can be passed.

Return Value. None.

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into several
Excel ranges, while auto-resizing each range. The varargout parameter is
supplied from a method that has been compiled from the MATLAB function.

function varargout = randvectors
for i=1:nargout
varargout{i} = rand(i,1);
end

This function produces a sequence of nargout random column vectors, with the
length of the ith vector equal to i. Assume that this function is included in a
class named myclass that is included in a component named mycomponent with
a version of 1.0. The Visual Basic subroutine takes no arguments and places
the results into Excel columns starting at A1, B1, C1, and D1. If an error
occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object

D-7

D Utility Library

D-8

Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range

On Error GoTo Handle Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 Range("B1")
Set R3 Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call autil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub
Handle Error:
MsgBox (Err.Description)
End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to variant dates.

Parameters.
Argument Type Description
pvar Variant Variant to be converted.

Return Value. None.

Remarks. MATLAB handles dates as double precision floating point numbers
with 0.0 representing 0/0/00 00:00:00 (See “Data Conversion Rules” on

page B-2 for more information on conversion between MATLAB and COM date
values). By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by the
COM date bias as well as coerced to COM dates. The MWDate2VariantDate

Utility Library Classes

method performs this transformation and additionally converts dates in string
form to COM date types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now,;
for i=1:n
X(i,1) =y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with a
version of 1.0. The subroutine takes an Excel range and a Double as inputs and
places the generated dates into the supplied range. If an error occurs, a
message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MwDate2VariantDate(R)
Exit Sub
Handle Error:
MsgBox (Err.Description)
End Sub

Class MWFlags

The MWF1lags class contains a set of array formatting and data conversion flags
(See “Data Conversion Rules” on page B-2 for more information on conversion
between MATLAB and COM Automation types). All Excel builder components

D-9

D Utility Library

D-10

contain a reference to an MWFlags object that can modify data conversion rules
at the object level. This class contains these properties:

® “Property ArrayFormatFlags As MWArrayFormatFlags” on page D-10

® “Property DataConversionFlags As MWDataConversionFlags” on page D-13
® “Sub Clone(ppFlags As MWFlags)” on page D-15

Property ArrayFormatFlags As MWArrayFormatFlags

The ArrayFormatFlags property controls array formatting (as a matrix or a cell
array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

® “Property InputArrayFormat As mwArrayFormat” on page D-10

® “Property InputArrayIndFlag As Long” on page D-11

® “Property OutputArrayFormat As mwArrayFormat” on page D-11

® “Property OutputArraylndFlag As Long” on page D-12

® “Property AutoResizeOutput As Boolean” on page D-12

¢ “Property TransposeOutput As Boolean” on page D-12

Property InputArrayFormat As mwArrayFormat. This property of type mwArrayFormat
controls the formatting of arrays passed as input parameters to Excel builder
class methods. The default value is mwArrayFormatMatrix. The behaviors
indicated by this flag are listed in the next table.

Utility Library Classes

Table D-1: Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in Table B-3, COM
VARIANT to MATLAB Conversion Rules, on
page B-10.

mwArrayFormatMatrix Coerces all arrays into matrices. When an input
argument is encountered that is an array of
variants (the default behavior is to convert it to a
cell array), the data converter converts this array
to a matrix if each Variant is single valued, and
all elements are homogeneous and of a numeric
type. If this conversion is not possible, creates a
cell array.

mwArrayFormatCell Coerces all arrays into cell arrays. Input scalar or
numeric array arguments are converted to cell
arrays with each cell containing a scalar value for
the respective index.

Property InputArraylndFlag As Long. This property governs the level at which to
apply the rule set by the InputArrayFormat property for nested arrays (an
array of Variants is passed and each element of the array is an array itself). It
is not necessary to modify this flag for varargin parameters. The data
conversion code automatically increments the value of this flag by 1 for
varargin cells, thus applying the InputArrayFormat flag to each cell of a
varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to Excel builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the next table.

D-11

D Utility Library

Table D-2: Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in Table B-2, MATLAB to
COM VARIANT Conversion Rules, on page B-5.

mwArrayFormatMatrix Coerces all arrays into matrices. When an output
cell array argument is encountered (the default
behavior converts it to an array of Variants), the
data converter converts this array to a Variant
that contains a simple numeric array if each cell is
single valued, and all elements are homogeneous
and of a numeric type. If this conversion is not
possible, an array of Variants is created.

mwArrayFormatCell Coerces all output arrays into arrays of Variants.
Output scalar or numeric array arguments are
converted to arrays of Variants, each Variant
containing a scalar value for the respective index.

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the rule
set by the OutputArrayFormat property for nested arrays. As with the input
case, this flag is automatically incremented by 1 for a varargout parameter.
The default value of this flag is 0.

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges only.
When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper left
corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True transposes the
output arguments. This flag is useful when processing an output parameter
from a method call on an Excel builder component, where the MATLAB

D-12

Utility Library Classes

function returns outputs as row vectors, and you desire to place the data into
columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags

The DataConversionFlags property controls how input variables are processed
when type coercion is needed. The MWDataConversionFlags class is a
noncreatable class accessed through an MWFlags class instance. This class
contains these properties:

¢ “Property CoerceNumericToType As mwDataType” on page D-13
¢ “Property InputDateFormat As mwDateFormat” on page D-13

¢ “PropertyOutputAsDate As Boolean” on page D-15

¢ “PropertyDateBias As Long” on page D-15

Property CoerceNumericToType As mwDataType. This property converts all numeric
input arguments to one specific MATLAB type. This flag is useful is when
variables maintained within the Visual Basic code are different types, e.g.,
Long, Integer, etc., and all variables passed to the compiled MATLAB code
must be doubles. The default value for this property is mwTypeDefault, which
uses the default rules in “COM VARIANT to MATLAB Conversion Rules” on
page B-10.

Property InputDateFormat As mwDateFormat. This property converts dates passed as
input parameters to method calls on Excel builder classes. The default value is
mwDateFormatNumeric. The behaviors indicated by this flag are shown in
Table D-3, Conversion Rules for Input Dates.

Table D-3: Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as indicated by
the rule listed in Table B-3, COM VARIANT to
MATLAB Conversion Rules, on page B-10.

mwDateFormatString Convert input dates to strings.

D-13

D Utility Library

Example. This example uses data conversion flags to reshape the output from a
method compiled from a MATLAB function that produces an output vector of
unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n <2, p = zeros(1,0); return, end

p =1:2:n;
q = length(p);
p(1) = 2;

for k = 3:2:sqrt(n)
if p((k+1)/2)
p(((k*k+1)/2):k:q) = O;
end
end

p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and n.
Assume that this function is included in a class named myclass that is included
in a component named mycomponent with a version of 1.0. The subroutine takes
an Excel range and a Double as inputs, and places the generated prime
numbers into the supplied range. The MATLAB function produces a row
vector, although you want the output in column format. It also produces an
unknown number of outputs, and you do not want to truncate any output. To
handle these issues, set the TransposeOutput flag and the AutoResizeOutput
flag to True. In previous examples, the Visual Basic CreateObject function
creates the necessary classes. This example uses an explicit type declaration
for the aClass variable. As with previous examples, this function assumes that
MWInitApplication has been previously called.

D-14

Utility Library Classes

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeQutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output argument as
a date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by the
COM date bias (693960) as well as coerced to COM dates. Set this flag to True
to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing COM to
MATLAB numeric date conversions. The default value of this property is
693960, representing the difference between the COM Date type and MATLAB
numeric dates. This flag allows existing MATLAB code that already performs
the increment of numeric dates by 693960 to be used unchanged with Excel
builder components. To process dates with such code, set this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

Parameters.
Argument Type Description
ppFlags MWFlags Reference to an uninitialized
MWFlags object that receives the
copy.

Return Value. None

D-15

D Utility Library

D-16

Remarks. Clone allocates a new MWFlags object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWStruct

The MWStruct class passes or receives a Struct type to or from a compiled class
method. This class contains seven properties/methods:

® “Sub Initialize([varDims], [varFieldNames])” on page D-16

e “Property Item([i0], [i1], ..., [i31]) As MWField” on page D-17

® “Property NumberOfFields As Long” on page D-20

® “Property NumberOfDims As Long” on page D-20

® “Property Dims As Variant” on page D-20

® “Property FieldNames As Variant” on page D-20

® “Sub Clone(ppStruct As MWStruct)” on page D-21

Sub Initialize([varDims], [varFieldNames])

This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

Parameters.
Argument Type Description
varDims Variant Optional array of dimensions
varFieldNames Variant Optional array of field names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1 and
no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Utility Library Classes

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error

‘Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct

Set y new MWStruct

'"Initialize x to be 2X2 with fields "red", "green", and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
‘Initialize y to be 1X5 with fields "name" and "age"

Call y.Initialize(5, Array('name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y
Call y.Initialize(, Array("'name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Property ltem([i0], [i1], ..., [i31]) As MWField

The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure array.

D-17

D Utility Library

D-18

Parameters.
Argument Type Description
io,i1, ..., i31 Variant Optional index arguments. Between 0

and 32 index arguments can be entered.
To reference an element of the array,
specify all indexes as well as the field
name.

Remarks. When accessing a named field through this property, you must supply
all dimensions of the requested field as well as the field name. This property
always returns a single field value, and generates a bad index error if you
provide an invalid or incomplete index list. Index arguments have four basic
formats:

¢ Field name only.

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2

x("green") = 0.4

X("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct class.
In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

¢ Single index and field name.

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green",
and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

Utility Library Classes

¢ All indices and field name.
This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the

array in the previous example:

For I From 1 To 2
For J From 1 To 2
r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")
Next
Next

¢ Array of indices and field name.

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index

array:
Dim Index(1 To 2) As Integer

For I From 1 To 2

Index(1) =1
For J From 1 To 2
Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")
Next

Next
With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

® You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one index
set. The combining stops when the number of dimensions has been reached.

For example:
Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

D-19

D Utility Library

D-20

Index1(1) =1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to:
x(1, 1, 3, 2, 2, "red") = 0.5

¢ The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

¢ Field names are case sensitive.

Property NumberOfFields As Long

The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long

The read-only NumberOfDims property returns the number of dimensions in the
struct array.

Property Dims As Variant

The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant

The read-only FieldNames property returns an array of length NumberOfFields
that contains the field names of the elements of the structure array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

Utility Library Classes

Exit S

On Error Goto Handle Error

' Call a method that returns an MWStruct in x
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)
For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields
y = x(I,J,FieldNames(K))
' Do something with y
Next
Next
Next
ub

Handle Error:

End Su

MsgBox (Err.Description)
b

Sub Clone(ppStruct As MWStruct)

Creates a copy of an MWStruct object.
Parameters.
Argument Type Description
ppStruct MWStruct Reference to an uninitialized

MWStruct object to receive the
copy.

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

D-21

D Utility Library

Example. The following Visual Basic example illustrates the difference between
assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1

‘Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is also modified 'x3's "age" field unchanged
x1("age") = 50

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Class MWField

The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

® “Property Name As String” on page D-22

® “Property Value As Variant” on page D-23

® “Property MWFlags As MWFlags” on page D-23

® “Sub Clone(ppField As MWField)” on page D-23

Property Name As String
The name of the field (read only).

D-22

Utility Library Classes

Property Value As Variant

Stores the field’s value (read/write). The Value property is the default property
of the MWField class. The value of a field can be any type that is coercible to a
variant, as well as object types.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.
Argument Type Description
ppField MWField Reference to an uninitialized
MWField object to receive the
copy.

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of the
object's contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWComplex

The MWComplex class passes or receives a complex numeric array into or from a
compiled class method. This class contains four properties/methods:

® “Property Real As Variant” on page D-24

® “Property Imag As Variant” on page D-24

* “Property MWFlags As MWFlags” on page D-25

® “Sub Clone(ppComplex As MWComplex)” on page D-25

D-23

D Utility Library

D-24

Property Real As Variant

Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that the
underlying array must resolve to a numeric matrix (no cell data allowed). Valid
Visual Basic numeric types for complex arrays include Byte, Integer, Long,
Single, Double, Currency, and Variant/vbDecimal

Property Imag As Variant

Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is

nonempty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is used
in a method call.

Example. The following Visual Basic code creates a complex array with the
following entries:

X = [1+i 1+2i
2+1i 2+2i |

Sub foo()

Dim x As MWComplex

Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I =1 To 2
For J =1 To 2
rval(I,J)
ival(I,J) =

[
C H

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag ival

Exit Sub

Handle_Error:

Utility Library Classes

MsgBox (Err.Description)
End Sub

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MwWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.
Argument Type Description
ppComplex MWComplex Reference to an uninitialized
MWComplex object to receive the
copy.

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Class MWSparse

The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:
* “Property NumRows As Long” on page D-26

* “Property NumColumns As Long” on page D-26

® “Property RowIndex As Variant” on page D-26

* “Property ColumnIndex As Variant” on page D-26

® “Property Array As Variant” on page D-26

* “Property MWFlags As MWFlags” on page D-26

® “Sub Clone(ppSparse As MWSparse)” on page D-27

D-25

D Utility Library

D-26

Property NumRows As Long

Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the RowIndex array.

Property NumColumns As Long

Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant

Stores the array of row indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types,
with the restriction that the underlying array must resolve to or be coercible to
a numeric matrix of type Long. If the value of NumRows is nonzero and any row
index is greater than NumRows, a bad-index error occurs. An error also results

if the number of elements in the RowIndex array does not match the number of
elements in the Array property’s underlying array.

Property Columnindex As Variant

Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant

Stores the nonzero array values of the sparse array. The value of this property
can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each

Utility Library Classes

MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)

Creates a copy of an MWSparse object.

Parameters.
Argument Type Description
ppSparse MWSparse Reference to an uninitialized
MWSparse object to receive the
copy.

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal sparse
array with the following entries:

X=[2-1 0 0 0
1 2-1 0 0
0-1 2 -1 0
0 0-1 2 -1
000 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K=1
For I =1 To 4

rows(K) =1

D-27

D Utility Library

D-28

=TI +1

nn =
N H

(L ||

o

o

=

(72}

—

X
=<

|
N 01 O

New MWSparse
x.NumRows = 5
.NumColumns = 5
.RowIndex = rows
.ColumnIndex = cols
.Array = vals

Exit Sub
Handle Error:

MsgBox (Err.Description)
End Sub

Class MWArg

The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

® “Property Value As Variant” on page D-29

® “Property MWFlags As MWFlags” on page D-29

® “Sub Clone(ppArg As MWArg)” on page D-29

Utility Library Classes

Property Value As Variant

The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.
Argument Type Description
ppArg MWArg Reference to an uninitialized

MWArg object to receive the copy.

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

D-29

D Utility Library

Enumerations

The Excel builder Utility Library provides three enumerations (sets of
constants):

¢ “Enum mwArrayFormat” on page D-30

¢ “Enum mwDataType” on page D-30

¢ “Enum mwDateFormat” on page D-31

Enum mwArrayFormat

The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion. Table D-4 lists the members of this
enumeration.

Table D-4: mwArrayFormat Values

Constant Numeric Description

Value
mwArrayFormatAsIs 0 Do not reformat the array.
mwArrayFormatMatrix 1 Format the array as a matrix.
mwArrayFormatCell 2 Format the array as a cell array.

Enum mwDataType

The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type. Table D-5 lists the members of this enumeration.

Table D-5: mwDataType Values

Constant Numeric MATLAB Type
Value

mwTypeDefault 0 N/A

mwTypeLogical 3 logical

D-30

Enumerations

Table D-5: mwDataType Values (Continued)

Constant Numeric MATLAB Type
Value
mwTypeChar 4 char
mwTypeDouble 6 double
mwTypeSingle 7 single
mwTypeInt8 8 int8
mwTypeUint8 9 uint8
mwTypeInti16 10 int16
mwTypeUint16 11 uint16
mwTypeInt32 12 int32
mwTypeUint32 13 uint32

Enum mwDateFormat

The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates. Table D-6 lists the members of this enumeration.

Table D-6: mwDateFormat Values

Constant Numeric Description
Value
mwDateFormatNumeric 0 Format dates as numeric
values.
mwDateFormatString 1 Format dates as strings.

D-31

D Utility Library

D-32

Troubleshooting

E Troubleshooting

E-2

This section provides a table showing errors you may encounter using
MATLAB Builder for Excel, probable causes for these errors, and suggested

solutions.

Table E-1: MATLAB Builder for Excel Errors and Suggested Solutions

Message

Probable Cause

Suggested Solution

MBUILD.BAT: Error: The chosen
compiler does not support
building COM objects.

Error in
component_name.class_name.1_0:
Error getting data conversion
flags.

Error in VBAProject: ActiveX
component can't create object.

Error in VBAProject: Automation
error The specified module
could not be found.

The chosen compiler
does not support
building COM objects.

Usually caused by
mwcomutil.dll not
being registered.

1. Project DLL is not
registered.

2. An incompatible
MATLAB DLL exists
somewhere on the
system path.

This usually occurs if
MATLAB is not on the
system path.

Rerun mbuild -setup and
choose a supported compiler.

Open a DOS window, change
directories to
<matlab>\bin\win32
(<matlab> represents the
location of MATLAB on your
system), and run the command
mwregsvr mwcomutil.dll.

If the DLL is not registered,
open a DOS window, change
directories to
<projectdir>\distrib
(<projectdir> represents the
location of your project files),
and run the command:
mwregsvr <projectdll>.dll.

Place <matlab>\bin\win32 on
your path.

Table E-1: MATLAB Builder for Excel Errors and Suggested Solutions (Continued)

Message

Probable Cause

Suggested Solution

LoadLibrary("component_name_1_
0.d11") failed - The specified
module could not be found.

Cannot recompile the M file
Xxxx because it is already in
the library libmmfile.mlib.

Arguments may only be defaulted
at the end of an argument list.

You may get this error
message while
registering the project
DLL from the DOS
prompt. This usually
occurs if MATLAB is
not on the system path.

The name you have
chosen for your M-file
duplicates the name of
an M-file already in the
library of precompiled
M-files.

You have modified the
VB script generated
for Excel-builder and
have not provided one
or more arguments
used in the modified
script.

Place <matlab>\bin\win32 on
your path.

Rename the M-file, choosing a
name that does not duplicate
the name of an M-file already
in the library of precompiled
M-files.

Provide a value for any
argument that requires an
explicit value. Arguments that
accept defaults appear at the
end of the argument list.

E-3

E Troubleshooting

E-4

Table E-2: Excel Errors and Suggested Solutions

Message Probable Cause

Suggested Solution

The Macros in this project are The macro security for
disabled. Please refer to the Excel is set to High.
online help or documentation

of the host application to

determine how to enable

macros.

Note: Wording may vary depending

upon the version of Excel you are

running.

Set Excel macro security to
Medium on the

Security Level tab

(Tools > Macro > Security).

Table E-3: Function Wizard Problems

Problem Probable Cause

Suggested Solution

The Function Wizard Help does not =~ The Function Wizard

display. Help file
(mlfunction.chm) is not
in the same directory as
the Function Wizard

add-in (m1function.xla).

Copy the Help file
(mlfunction.chm) into the
same directory as the
add-in.

A
array formatting flags 3-14

C

class 1-2
class method

calling 3-6
Class MWFlags D-9
Class MWUtil D-3
class name 1-2
COM

defined 1-2
COM class

producing A-8
COM VARIANT B-2
command line interface 1-8
Compiler Output A-10
component information 2-5
component name 1-5

Component Object Model 1-2

componentinfo 6-3
CreateObject function 3-6

D

data conversion flags 3-14
data conversion rules B-2

E

Enumeration
mwArrayFormat D-30
mwDataType D-30
mwDateFormat D-31

enumerations D-30

error processing A-2

errors
Excel E-4
Excel Builder E-2

F

flags
array formatting 3-14
data conversion 3-14

function wizard
argument properties 5-12
component browser 5-4
function properties 5-7
function utilities 5-14
function viewer 5-4
purpose 5-2

functions 3-3

G
Globally Unique Identifier (GUID) C-2

Graphical User Interface (GUI) 2-2
GUI

build menu 2-4

component menu 2-4

file menu 2-3

help menu 2-6

project menu 2-3
GUID (Globally Unique Identifier) C-2

I
IDL Mapping A-8

Index-1

Index

M
methods 1-2

missing parameter D-4
MWFlags class D-9
mwregsvr utility C-2
MWUtil class D-3
mx1ltool 6-5

purpose 2-2

N

New operator 3-6

P

project 1-2
creating 1-3
settings 2-7

project version 1-5

R

required arguments 5-8

S

self-registering component C-2
singleton MCR option 1-5
subroutines 3-3

T
troubleshooting E-2
type library C-2

U

unregistering components C-2

Index-2

utility library D-3

\'

varargin/varargout 5-8
VARIANT variable B-2
version number 1-3, C-4
versioning 1-3
versioning rules C-4
Visual Basic Mapping A-9

	Getting Started
	Building a Deployable Application
	Elements of a MATLAB Builder for Excel Project
	Creating a Project
	Managing M-Files and MEX-Files
	Building a Project
	Testing the Model
	Application Deployment
	Packaging and Distributing the Component

	Graphical User Interface
	Graphical User Interface Menus
	File Menu
	Project Menu
	Build Menu
	Component Menu
	Help Menu

	Project Settings

	Programming with MATLAB Builder for Excel
	Overview
	When to Use a Formula Function or a Subroutine
	Initializing MATLAB Builder for Excel Libraries with Excel
	Creating an Instance of a Class
	CreateObject Function
	Visual Basic New Operator

	Calling the Methods of a Class Instance
	Processing varargin and varargout Arguments
	Handling Errors During a Method Call
	Modifying Flags
	Array Formatting Flags
	Data Conversion Flags

	Usage Examples
	Magic Square Examples
	Creating the Project
	Building the Project
	Adding the MATLAB Builder for Excel COM Function to Excel
	Illustration 1. Output Magic Square Results to Excel
	Illustration 2. Transpose the Output
	Illustration 3. Resize the Output
	Inspecting the Visual Basic Code

	Using Multiple Files and Variable Arguments
	Creating the Project
	Building the Project
	Adding the MATLAB Builder for Excel COM Functions to Excel
	Illustration 4: Calling myplot
	Illustration 5: Calling mysum Four Different Ways
	Illustration 6: myprimes Macro
	Inspecting the Visual Basic Code

	Spectral Analysis Example
	Building the Component
	Integrating the Component with Visual Basic for Applications
	Creating The Visual Basic Form
	Adding The Spectral Analysis Menu Item to Excel
	Saving the Add-in
	Testing The Add-in
	Package the Add-in

	Function Wizard
	Introduction
	Installing the Function Wizard Add-in
	Starting the Function Wizard
	Function Viewer
	Component Browser
	Function Properties
	Argument Properties
	Function Utilities

	Function Reference
	Functions — Alphabetical List

	Producing a COM Object from MATLAB
	Capabilities
	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Visual Basic Mapping
	MATLAB Compiler Output

	Data Conversion
	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags

	Registration and Versioning
	Component Registration
	Self-Registering Components
	Globally Unique Identifiers

	Versioning
	Obtaining Registry Information

	Utility Library
	Utility Library Classes
	Class MWUtil
	Class MWFlags
	Class MWStruct
	Class MWField
	Class MWComplex
	Class MWSparse
	Class MWArg

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Troubleshooting
	Index

